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SUMMARY

The general design method for three-dimensional, potential, incompressible or
subsonic-compressible flow developed in part I of this report is applied to the design of
simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical
examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a
side inlet for turbomachines. The two major inputs to the program are the upstream
boundary shape and the lateral velocity distribution on the duct wall. As a result of these
inputs, boundary conditions are overprescribed and the problem is ill posed. However, it
appears that there are degrees of "compatibility" between these two major inputs and
that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not
prescribing the shape of the upstream boundary, the problem presumably becomes well
posed, but it is not clear how to formulate a practical design method under this circum-
stance. Nor does it appear desirable, because the designer usually needs to retain control
over the upstream (or downstream) boundary shape.

The problem is further complicated by the fact that, unlike the two-dimensional
case, and irrespective of the upstream boundary shape, some prescribed lateral velocity
distributions do not have proper solutions.

1.0 INTRODUCTION

In part I of this report (ref. 1), a general design method is developed for three-
dimensional, potential, incompressible or subsonic-compressible flow fields with arbitrary,
prescribed velocity distributions as a function of arc length along streamlines on the
boundary of the field. For (the present) part II of this report, a computer program,
DIN3D1, has been developed for the design of simple, unbranched ducts with uniform
velocities at the upstream and downstream boundaries and with arbitrary, prescribed
velocity distributions along streamlines on the lateral boundaries.

The design of flow fields with satisfactory velocities along the boundary is impor-
tant for the following reasons:

{1) Boundary-layer separation losses can be avoided by prescribing velocity distri-
butions in the direction of flow, along the surfaces of the boundary, that do not decrease
100 rapidly.

{2) Shock losses in compressible flow and cavitation in incompressible flow can be
avoided by prescribing velocities that do not exceed certain maximum values dictated by
these phenomena.

{3) For compressible flow in ducts, the desired flow rate can be assured by pre-
scribing velocities that do not result in premature choked flow.




However, the first objective of fluid dynamic design is to determine the shape of the
flow-field boundary for which losses are minimum. For both incompressible and shock-
free compressible flow, the fluid losses originate at the material surfaces along the flow-
field boundary, and the magnitude of these losses depends on the velocity distribution
along these surfaces. The characteristics of a desirable velocity distribution are rela-
tively well known from boundary-layer theory.

The main program, DIN3D1, together with 21 major subroutines is described herein.
The program input and output are also described and several numerical examples are
presented.

2.0 SYMBOLS

All quantities are nondimensional; velocity is expressed as a ratio of the upstream
velocity; linear quantities, expressed in any consistent unit for input, are made dimen-
sionless in the program by dividing by the square root of the upstream boundary area;
names for variables and parameters used in the computer program are not listed.

A local continuity parameter, eq. (3.3.2)

a distance between adjacent nodal points of finite-difference star, figs. in
section 3.2

B local continuity parameter, eq. (3.3.3)

CeyCos
coefficients in governing finite-difference eqs. (3.3.4) and (3.3.5)

Cl).-o)Cé

EIP

C1,C3,

coefficients given by egs. (3.4.3) to (3.4.5)
% %

C3;C4

€ unit vector

€] unit vector in direction of q along streamlines, which are intersections of
¥ and n stream surfaces, fig. in section 3.1

€y unit vector tangent to intersection of m stream surface and ¢ potential
surface, fig. in section 3.1

€3 unit vector tangent to intersection of ¥ stream surface and ¢ potential
surface, fig. in section 3.1

LK indices in ¢, ¥, and m directions, respectively

Lk unit vectors in X, y, and z directions, respectively, fig. in section 3.1

JX,KX indices for location of primary streamline, fig. in section 3.5

k adjustment factors for constraints, egs. (4.2.2) and (4.2.9)

m path length in direction of ez along intersection of { stream surface and

¢ potential surface, fig. in section 3.1




o

W

2

x,Y,2

a,Byy

@,¥,M

()
Subscripts:
amp

D

max

min

O;lya..;é

1,2,3

path length in direction of €, along intersection of m stream surface and
¢ potential surface, fig. in section 3.1

path length along perimeter of upstream boundary, fig. in section 3.5
Ing

velocity, expressed as ratio of upstream velocity

velocity vector, €1q, fig. in section 3.1

residual error, eq. (3.3.4)

radius from axis of duct turn, fig. in appendix A

path length along streamline in direction of €y, fig. in section 3.1
Cartesian coordinates in physical space

angles of direction cosines in x,y,z space, fig. in section 3.1

finite increment

angle with which ¢ and 71 stream surfaces intersect on potential surface,
fig. in section 3.1; any angle

local static density of fluid as ratio of upstream static density
wvelocity potential, eq. (3.0.1)

curvilinear coordinates in physical x,y,2 space, or orthogonal coordinates of
transformed o,¥,mn space

dot-product operator of two vectors

amplitude

downstream boundary

maximum

minimum

outer radius

principal streamline, IP on first fig. in section 7.1
upstream boundary

grid points in finite-difference star, figs. in section 3.2

variables or components of variables associated with directions of €3}, €3,
and €3, respectively




3.0 GOVERNING DIFFERENTIAL EQUATION AND CONSTRUCTION OF FLOW FIELD

A major difficulty faced by all classical design methods is that they are boundary-
value problems in which the velocity is specified along physical boundaries, the shapes of
which are not known until the problem is solved. In this report, the difficulty was avoided
by solving the problem in transformed ¢,¥,n space, where ¢ and 4 are the velocity
potential and a stream function, respectively, and 1 is a second stream function asso-
ciated with continuity in three--dimensional flow. The velocity distribution can then be
expressed as a function of ¢ along the boundary streamlines (lines of constant ¢ and m)
from the relation

¢ = [q(s) ds + const (3.0.1)

where q(s) is the prescribed velocity as a function of arc length s along the boundary
streamline in physical x,y,z space.

3.1 Physical x,v,z space. - The flow field at a point in physical x,vy,2 space has
two stream surfaces of constant ¥ and mn, respectively, that intersect the potential
surface at 90° and intersect one another at an angle © measured on the potential sur-
face (ref. 1). The directions of these three intersections are given by the unit vectors
€1, €9, and €3, each defined by its direction cosines cos a, cos 8, and cos y. Differ-
ential lengths along the intersections are given by ds, dm, and dn, as shown in the fol-
lowing figure.




The velocity vector q (€7q) is tangent to the intersection of the ¢ and 7 stream

surfaces so that q is normal to the potential surface ¢ and ¥ and m are constant
along the streamline.

3.2 Transformed @,¥,m space. - For a duct, the flow field in transformed o,¥,m
space becomes a cylinder with a cross section

]/ q)
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the same shape as the upstream boundary configuration in X,y,z space, provided that the
stream surfaces ¥ and m at the upstream boundary are defined by lines of constant y
and %, respectively (ref. 1). Lines of constant ¥ and m (paired values) on the lateral
boundary are streamlines, and the velocity vector q is everywhere parallel to the ¢
axis. The rectangular grid resulting from the intersections of surfaces of constant ¢, ¢,
and m, for various specified values of grid spacing ay, ap, and ag, respectively, is used to
solve the governing differential equation by finite-difference methods. (The procedure is
outlined in ref. 1.) Thus, for every internal grid point (numbered 0) in the flow field, at
which points the finite-difference form of the governing equation must be satisfied, a
finite-difference star is formed with six adjacent grid points numbered 1 to 6 and spaced
a1,..., ag distance away.
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3.3 Governing differential equation. - From page 28 of part I, the governing,
second-order, partial-differential equation for the distribution of ln q in transformed
®,¥,m space is

azm q 82 Inp 82 ln sin ©
2 ! 2 ! 2
oy o0 o

K K
-n ¥

2 2
q q

52 <alnB 8lng +821nq> _amB <81nq 81nB>

dv v o2 Ao 30 Y ap

2
+A2<81nA dlng , 2 1nq>-81nA <81nq alnA> o 3.3.1)

an an anZ 103 d¢ T 3¢

where q is the local velocity expressed as a ratio of the upstream velocity (g = 1.0 at the
upstream boundary), p is the density expressed as a ratio of the upstream static density
(p = 1.0 at the upstream boundary), © is the distortion angle, which is the angle of
intersection between the ¥ and 1 stream surfaces, as shown by the figure in section 3.1
(at the upstream boundary where the specified grid is rectangular, © equals 90°, i.e.,
there is no "distortion"), Ky, and KT\ are the total curvatures in X,v,z space of the ¥
and 1 stream surfaces (Kq, and Ky equal 0 at the upstream boundary), and A and B
are the "continuity" parameters defined by (ref. 1)

A=p g—% sin © (3.3.2)
dm .
B = pdn sin © (3.3.3)

(A and B equal 1.0 at the upstream boundary, because there d¥f = dn and dn =dm.)

In finite-difference form, equation (3.3.1) becomes (ref. 1)
CC + ClQl + CZQZ + CSQS + C4Q4 + CSQS + C6Q6 - COQO =G (3.3.4)

where




¢ .8mp, P msine <alnB>2 <81nA>z Kot Ky )
.- _ _

30 2 30 2 o¢ 103 exp(2Q 0)
a
C. - 4 __Z__alanalnA
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2
o ___ st (__g_+ a1n B)
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2
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C3=a(a +a)la, ¥ an
33+ 2¢) \ 2,

4 (_:_z_ dlnB 81nA>

C,= .3.
4 a4(a1+a4) a1+ 1510} * a9 (3.3.9)
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where Q is In g, the numerical subscripts refer to the six adjacent grid points in the
finite-difference star shown in the second figure of section 3.2, and the residual error

# equals 0 when the governing equation (3.3.1) is satisfied locally. With the coefficients
Ccy» C15...:C4, C at each internal grid point held constant, equation (3.3.4) is solved
globally by changing the values of Qg according to standard relaxation procedures.
These procedures involve repeated passes (IT counter) through the entire flow field,
starting at the upstream boundary, until the maximum value of # in the entire field is
less than the input value of EPSR. This set of calculations, involving fixed values of the
coefficients, constitutes one major iteration (ITER counter). The coefficients are then
recomputed from the new values of Q, and the procedure is repeated until the solution is
complete.

3.4 Direction cosines. - With the velocity gradients known from the solution of the
governing equation (3.3.1), the nine direction cosines associated with the three unit vec-
tors €1, €y, and €3 (fig. in section 3.1) are obtained from their gradients in the o
direction starting from the upstream boundary. (The boundary is assumed to lie on a v,z
plane so that cos ay, cos By, and cos Y3 are 1.0 and the other six direction cosines are
zero.) For example, the gradients of the direction cosines of the unit vector €p, which is
in the direction of the velocity vector q, are obtained (ref. 1) from the components of the
irrotationality equation normal to the ¥ and m surfaces and from the direction-cosine
law

2
cosz a + cosz B +cos Yy=1 (3.4.1)

Thus,




where

0 cos B1 cos Yl

*
C1 cos BZ cos YZ
3 *
cos cxl CZ cos 133 cos Y3
o D1
cos cxl 0 cos Yl
*
cos 02 C1 cos Yz
%
o cos Bl COs Qy C g COS Yy
o D1
cos cxl cos B 1 0
*
cos qz cos B 2 C1
*
o cos Y, cos &y COS B3 Cz
0] D1
cos ot1 cos Bl cos Yl
D =
1 cos az cos BZ cos Yz
cos aB cos B 3 cos %

> (3.4.2)




and

(3.4.3)

0

1l

o]
(e}
3

*
Q
Eﬂ

(3.4.4)

Equations for the gradients of the direction cosines of €y and €3 in the ¢ direc-
tion are obtained in part I of this report (ref. 1) in a similar manner. In (the present) part II,
however, the expressions for C§ and CZ (eqs. (22f) and (23f) in part I) have been

reformulated, by making use of the continuity equations (16¢) and (164) in reference 1, to
give

* _l__acose dln A dlnB
C3 =3 e cos © < 30 =~ de >]
and ) (3.4.5)
C*__l__acose . ealnA dlnB
4= 2| a8 *O°F 3 ~ a9

Finally, again by making use of the continuity and irrotationality equations in part [,
equations can be developed (section 5.2) for the gradients of the direction cosines of the
unit vector €] in the ¢ and m directions on potential surfaces. These gradients are
used in subroutine ANGL (section 5.5).

3.5 Construction of flow field in Xx,v,z space. - With the velocity distribution
known from the solution of equation (3.3.1) in ¢,¥,m space, and with the distribution of
the direction cosines likewise known from section 3.4, the shape of the flow field in x,v,z
space can be constructed. The boundary of this flow field constitutes the design of the
duct.

The construction starts in X,v,z space with the arbitrarily specified shape of the
upstream boundary on the yy5,2yy plane at Xy = 0, where, for nondimensional variables (as
defined in ref. 1), ¢ and mn equal yy and zyj, respectively, because the grid is rectan-
gular (but not necessarily square).
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From each intersection of the grid lines in the figure, a streamline (with constant
paired values of ¥ and 1) extends to the downstream boundary. The X,y,z2 coordinates
of the streamline at each successive potential surface (constant ©¢) are obtained by
integrating the following equations (egs. (26a), (26b), and (26¢), ref. 1):

¢ cos (1.1
X = XU+ q d(p (3.5.1)
0

? /cos B 1\
V= YU + q d(P (3.5.2)
0
¢ cos Y 1
Z = ZU+ q d(P (3.5.3)
0

3.6 Alternative construction of flow field in x,v,2 space. - An alternative method
for constructing the flow field is to select one streamline (designated by the indices JX
and KX as shown on the figure in section 3.5), obtained from equations (3.5.1) to (3.5.3),
and to use this primary streamline as a backbone from which to obtain the x,y,2 coor-
dinates of every grid point on each successive potential surface by integrating the fol-
lowing equations (ref. 1) in the ¢ direction on a potential surface,

v cos a,
X=X + < ) > dvs (3.6.1)
U

X

v cos BZ
Y=Y+ ) > dys (3.6.2)

wX

hd cos Y,
z=2_+ ( B >d1p' (3.6.3)

and in the m direction on a potential surface,

n [ e} 03

X=X + A > dn (3.6.4)
m cos 33

Y=Y, + A > dn (3.6.5)

and

and
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and

n <cos Y3
z2=2 + Y > dn (3.6.6)

m
X

The continuity parameters A and B in equations (3.6.1) to (8.6.6) are computed by the
program from equations (3.3.2) and (38.3.3), respectively, by using values of An and Am
from the previous iteration.

The location JX,KX of the primary streamline is arbitrary. However, results
should be best for locations near the center of gravity of the upstream boundary and
should be biased somewhat toward the boundary streamlines with the highest prescribed
velocities if the duct bends. For solutions with planar symmetry, the computer program
DIN3D1 requires that JX,KX be on the plane of symmetry.

In the program, both methods (sections 3.5 and 3.6) are used to find the x,v,z
coordinates. This is further discussed in section 4.7, where the input coefficient CAVP
is introduced to allow a weighted average of the two methods. The first method
(section 3.5) is used in subroutine VARI (section 5.2), where CAVP also is used, and the
second method (section 3.6) appears in subroutine POTS (section 5.16).

4.0 ILL-POSED NATURE OF DESIGN METHOD WHEN APPLIED TO DUCTS

The design method applied to ducts requires two major inputs: (1) the upstream
boundary configuration and (2) the velocity distribution on the lateral boundary. The
lengths As of all streamlines on the boundary are precisely fixed because along each
streamline

?p
d
As = —é& (4.0.1)

U

where q is a known function of ¢ from equation (3.0.1) or, alternatively, is specified
directly as a function of ¢. Thus, for various upstream boundary configurations, which
for a uniform (constant) upstream velocity with parallel flow must be plane, it appears
unlikely that the downstream potential surface can also be plane with parallel streamlines
normal to the surface, as required by the design method. If this is the case, boundary
conditions are overprescribed and the design problem is ill posed.

For every prescribed upstream boundary configuration that lies on a flat, potential
surface as assumed by the design method (section 7.2), there is an infinity of compatible
velocity distributions that could exist on the lateral boundary, because there is an infinity
of lateral boundary configurations for any upstream boundary shape. However, this con-
sideration does not rule out the possibility of an infinity of lateral velocity distributions
that are not compatible with the prescribed upstream boundary configuration.

Now, for a given duct configuration (completely specified) with upstream and down-~
stream regions extended so that the upstream and downstream boundaries are flat poten-
tial surfaces, as assumed by the design method, a specific velocity distribution exists
throughout the flow field and in particular on the lateral boundary. Presumably, this
velocity distribution is unique to this duct shape (e.g., pp. 14 to 41, ref. 2); it then follows




that for a given lateral velocity distribution there is a unique upstream boundary config-
uration. Thus, although for a given upstream boundary an infinity of lateral velocity
distributions exists, as discussed in the previous paragraph, for a given lateral velocity
distribution there is only one compatible upstream area configuration. It is concluded
that the general design method when applied to ducts is ill posed because the boundary
conditions are overprescribed. However, fortunately, there are "degrees of incompati-
bility," as considered in the next section.

4.1 Compatibility between prescribed upstream boundary configuration and lateral
velocity distribution. - For a given lateral velocity distribution, some upstream boundary
configurations are less compatible than others. For example, a stellated upstream con-
figuration such as

would be "highly incompatible" with a lateral velocity distribution corresponding to the
flow through an elbow of constant, circular cross section. An elliptical upstream con-
figuration with moderate aspect ratio should be "highly compatible" with such a lateral
velocity distribution.

Program DIN3DI1 has been so constructed that stream-tube areas are adjusted to
local velocities (by means of the continuity parameters A and B; section 4.2 {con-
straint 6)), so that, unless the upstream boundary configuration is "highly incompatible,”
the continuity condition is essentially satisfied (the downstream-area error is
printed) for each of a relatively large number of major iterations (ITER; end of
section 3.3). The solution at first converges for each successive major iteration (as evi-
denced by decreasing maximum 2% in the flow field). Eventually, because boundary
conditions are overspecified, the solution must diverge and fail. For "highly incompatible"
upstream boundary configurations, divergence is rapid and occurs after only a few major
(ITER) iterations. For "highly compatible" cases, divergence is gradual and occurs only
after many iterations. Thus, excellent approximate solutions are obtained by stopping the
calculations before, or shortly after, divergence begins (section 4.4).

Finally, the program includes options (IVEL equals 2 or 3) for lateral velocity dis-
tributions that tend toward compatibility with the prescribed upstream boundary config-
uration. These "equilibrium" velocity distributions are based on the velocity distribution
in ducts of constant cross section and very large turning angle. Under these conditions,
near the middle of the turn, the velocity distribution on potential surfaces becomes a free
vortex (qr = constant) with r measured from the axis of the turn. A lateral velocity
distribution around the periphery of each potential surface, based on this free-vortex
distribution, and with r related to the upstream surface configuration, constitutes the
"equilibrium" velocity distribution on the lateral boundary (appendix A).

13
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4.2 Constraints on calculation procedure. - Because of the ill-posed nature of the
method when applied to ducts, it is beneficial to guide the calculations by imposing the
following six constraints, all of which would be satisfied automatically in a well-posed
case:

(1) The x,v,z coordinates of every internal grid point in the flow field are computed
by two methods (sections 3.5 and 3.6), and the results are averaged according to the input
value of CAVP, the decimal fraction of the first method that enters into the weighted
average. Thus,

0.0< CAVP <1.0 (4.2.1)

Although the optimum value of CAVP probably varies with the complexity of the
upstream boundary configuration and with the lateral velocity distribution, a value of 0.5
is generally satisfactory (also see section 4.6).

(2) During the iterative calculations, values of the direction cosines computed from
their gradients (eqs. (3.4.2), e.g.) can become greater than 1.0. If this occurs, the value is
set equal to 1.0 by the program.

(3) Also, during the iterative calculations, the sum of the squares of the direction
cosines may not equal 1.0, as required by equation (3.4.1). When this occurs, the program
changes each cosine value by a factor k, where

1
k= 3 ) " 77 (4.2.2)
(cos a+cos B +cos Y)

(4) At every interior grid point, the unit vector €j, which is tangent to the
intersection of the 1 stream surface and the velocity potential surface ¢, must be
normal to the unit vector &;, which is in the direction of the velocity (fig. in
section 3.1). Thus,

é'l . % =0 {4.2.3)

or

cos al cos az + COS Bl cos Bz + COS Yl cos Yz =0 (4.2.4)

When this relation is not so, the direction cosines of €9 are changed by the program so
that €9 becomes normal to €; and the plane of €; and €; remains unchanged. This
same "normality" condition is imposed on the direction cosines of the unit vector €3 in
the same figure. (Also, see appendix B.)

(5) Also, from the figure in section 3.1,

Ez . ‘ej‘,) = cos 6 (4.2.5)

from which

cos © = cos &, cOs @

9 + COS BZ cos B3+ COs Y, COS Ygq (4.2.6)

3




From the following figure, which shows a stream tube bounded by adjacent surfaces of

L potential surface @

constant ¥ and 1), the value of © must be greater than 0.0° and less than 180.0%
otherwise the stream-tube area becomes zero or negative. Thus, if from equation (4.2.6)
the absolute value of cos © is greater than 0.9962, the program sets cos © equal to
+0.9962 so that the "distortion" angle © lies in the range

5° <O < 175° (4.2.7)

(6) Finally, the values of the continuity parameters A and B, as computed by
equations (3.3.2) and (3.3.3), respectively, are changed by the same factor k so that the
following continuity condition (eq. (10d), ref. 1) is satisfied:

AB - 9—3—?—@- (4.2.8)

from which

K = 2;——‘—‘5@ (4.2.9)

4.3 Mode of failure. - For those cases where total failure of the solution is
approached after a sufficiently large number of major iterations (ITER), which number
depends on the compatibility condition discussed in a previous section, 4.1, this failure
usually occurs in the downstream region. Here the flow field in x,y,2z space distorts as
shown by the following examples.
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The lateral surfaces diverge, and the "distortion" angle © (constraint (5), section 4.2) may
vary rapidly and greatly from its initially undistorted value of 90° at the upstream bound-
ary (fig. in section 3.5). All of these distortions result from an accumulation of unreal
values of In q near the downstream boundary. This accumulation appears to result from
the relaxation procedure, which always starts at the upstream boundary and marches
through to the exit, continually pushing the effects of the ill-posed problem toward the
downstream boundary. The constraints discussed in section 4.2 maintain an apparently
well-behaved flow field elsewhere. (In section 4.8 the distortion near the downstream

boundary is found to be essentially independent of the extent of the downstream region,
supporting the preceding reasoning.)

4.4 Input option ISOLV. - As stated in section 4.1, excellent approximate solutions
can be obtained for prescribed upstream boundary configurations and lateral velocity
distributions that are moderately compatible. These solutions are achieved by stopping
the calculations before or shortly after divergence begins. Input option ISCLV =1
assumes that, because of the constraints discussed in section 4.2, an adequately converged
solution is achieved after four or more major iterations (ITER), provided that the error in
exit flow area, expressed as a decimal fraction, is less than 0.0033. Also, for ISOLV = 1,
if these criteria are not met, the calculations are then stopped and the solution is printed
out when the computed value of exit-area error changes sign - provided that the value of
ITER is greater than 8. In this latter case, the solution may not be acceptable if the
exit-area error (intermediate printout) is changing rapidly as the result of impending




failure. If none of the criteria are met, the solution continues until the number of major
iterations equals the input value of ITERMX or until the solution fails entirely.

For an input value of ISOLV = 0, the solution continues until (1) the number of major
iterations (ITER) equals the input value of ITERMZX, (2) provided that ITER > 4, the max-
imum value of & (eq. (3.3.4)) in the entire flow field at the beginning of 2 major iteration
is less than or egqual to 0.0020, or (3) the solution fails.

4.5 Effect of ITER on solution. - Because of the ill-posed nature of the design

method when applied to ducts, all examples must eventually fail (with rare exceptions in
simple cases) as the number of major iterations (ITER) increases indefinitely. Thus, as
shown, the solution changes with [TER. The changes are most pronounced in the
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ITER = 48 ITER = 72

downstream-area configuration and to a lesser degree in the turning angle of the duct.

It is suggested that, because the exit velocity is normal to the downstream boundary and
therefore not influenced by its shape, large changes in the exit-area configuration can
result from only minor changes in the lateral velocity distribution (appendix C). Likewise,
for the same lateral velocity distribution during an approximate solution, small changes in
the downstream boundary shape (but not in its area) can be expected from one major
iteration {ITER) to the next. Because for the larger values of ITER the solution is
approaching failure, the lower values of ITER are believed to give better approximate
solutions. For ISOLV = 1, the solution is stopped at ITER = 4, provided certain criteria
are met (section 4.4).
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(For this

(For this method, the

continuity condition is satisfied by the essentially correct values of the continuity
As shown in the following figures, the effect of

4.6 Effect of CAVP on solution. - In sections 3.5 and 3.6, two methods are

discussed for computing the coordinates of the flow field in physical x,y,z space. The

second method (section 3.6), for which continuity is satisfied, starts from the "primary"
parameters A and B, but the streamline lengths may not be correct.) When moving from
one potential surface to the next, these two sets of x,y,Z2 coordinates are averaged by

streamline location (JX,KX; fig. in section 3.5) and determines the coordinates by
the input value of CAVP, which is the decimal fraction of the first set that enters into

method, the streamline lengths are correct, but the continuity condition may not be
the weighted average of the two sets.

first method (section 3.5), which results in correct streamline lengths, determines x, v,
satisfied because of the ill-posed nature of the problem and its forced solution.) The

and z by integrating along streamlines between adjacent potential surfaces.

integrating in the ¢ and 7 directions on potential surfaces.
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CAVP on the solution for ITER = 72 is to go from the case where streamlines are normal
to the downstream potential surface but not parallel with each other (CAVP = 0.0) to the
case where the streamlines are parallel but not normal to the potential surface (CAVP =
1.0). A clearer picture of the difference is given by two side views:

CAVP =0.0

[
CAVP =10

For less extreme examples (ITER << 72), the two methods of computing the X,y,2
coordinates should give more nearly equal results, and a value of 0.5 for CAVP should
usually be satisfactory. For more complex upstream boundary configurations and for
problems involving less compatibility between the upstream boundary shape and the pre-
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scribed lateral velocity distribution, where the solution starts to diverge at relatively low
values of ITER, a better input value for CAVP might be as low as 0.2. However, in
some cases, because of the numerical integration procedure used by the second method
{section 3.6) on the potential surface, the duct wall may develop slightly rippled regions.
The ripples can be reduced by increasing the input value of CAVP or eliminated by
setting CAVP equal to 1.0.

4.7 Effect of duct turning angle on solution. - As might be expected, the greater
the duct turning angle AO, the lower the value of ITER at which the solution begins to
diverge. Or, as a corollary, for the same value of ITER, other things being equal, the
greater AB, the greater the distortion (if any) near the downstream boundary, as shown
by the following figures:

A8 = 7200




4.8 Effect of extent of downstream region on solution. - The downstream region is
that part of the duct near the downstream boundary where the lateral velocity is constant
and equal to its value at the downstream boundary. Because solutions apparently start to
diverge and distort near the downstream boundary, a question arises as to whether the
extent of the downstream region influences the magnitude and type of this distortion. As
the following figures indicate, the distortion is apparently not influenced appreciably by
the extent of the downstream region. This observation supports the discussion in
section 4.3 regarding the mode of failure, in program DIN3D1, for ill-posed problems.
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4.9 Effect of complexity of upstream boundary configuration on solution. - Exam-
ples of solutions with simple upstream boundary configurations and others with relatively
complex configurations are given by the figures on the next page. Solutions for complex
configurations require special care in prescribing lateral velocity distributions. Simple
upstream configurations involve no particular difficulty.

4.10 Remarks. - In concluding this major section on the ill-posed nature of the
general design method when applied to ducts, it is noted that the method is not ill posed
when applied to the external design problem (i.e., to the design of bodies with prescribed
velocities in infinite space). In this case, the velocity on the outer boundaries is every-
where constant, provided only that the upstream and downstream boundaries, which can
have any suitable shape (e.g., circular), are sufficiently large. This situation eliminates
the compatibility problem between prescribed boundary configuration and prescribed
velocity distribution, but other problems, such as body closure, remain.

Thus far, it has been implied that the general design method when applied to ducts
becomes well posed if the upstream boundary configuration is not specified. Under this
circumstance, it is not clear how, and may not even be possible, to carry out a practical
design procedure. Nor does it appear desirable, because the designer usually needs to
retain control over the upstream boundary configuration (which, by reversing the direction
of flow, becomes the downstream configuration, assuming that configuration needs to be
controlled).
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Simple {circle}

Simple {ellipse)

Complex (semiannulus)

Complex {general)
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The difficulty of the three-dimensional duct design problem is further increased by
the likelihood that, irrespective of the upstream boundary configuration, and unlike the
two-~dimensional case, proper solutions do not exist for every lateral velocity distribution.
The situation is considered in more detail in appendix C.

5.0 BRIEF DESCRIPTION OF COMPUTER PROGRAM DIN3D1

Program DIN3D1 is written in standard Fortran IV. Double precision is required for
computers with 32-bit words. In addition to the main program, there are 21 major sub-
routines, 3 minor subroutines, and 8 external functions. The main program and the major
subroutines are briefly described in this section.

5.1 Main program. - The main program governs the solution, as shown on the sim-
plified flowchart. The integer I designates a potential surface, starting with 1 at the
upstream boundary and ending with NI at the downstream boundary; the integer IT
counts the number of passes through the entire flow field (I =2 to I =NI- 1 =NI1), all
with the same global set of coefficients in the finite-difference equation (3.3.4); and the
integer ITER counts the number of major iterations, each with an improved set of coef-
ficients determined from the previous major iteration.

call PUTIN
TIER - 0
ITER - ITER + 1
1CON = 0
7] REMAX LE.0.002) AND, (ITER. 6T. & [P
Y
0 mwonmRmx P
Call PUTOUT Gl merori D

ERRAR

ICON = ICON + 1 Do I=2,NI1
Call START Cail ONEST}

End

Do I=2, NIL
Call VARI

Call FINIS
ERRAR

CA

7] (ITER. GT. 4. AND. (DABS (ERRAR). LT. 0. 0033} [P)—

———@ (ICON. LT. ICONX). AND_(ITER. GT. 1}
IT=0

Y
—J—————@ RESMAX. LE.EPSR
TT=1T+1

Call FIRST

Call COEF
Call RESID

¥
(1] DABS RMAX).LE.EPSR |

Simplified flowchart of main program
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In general, the design procedure in program DIN3D1 is as outlined under Numerical
Procedure on pages 56 and 57 in part I (ref. 1) of this report. The overall approach is to
solve (in subroutine RELAX) the finite-difference form of the governing differential
equation (3.3.4) everywhere on one potential surface at a time, starting at I = 2 (the first
surface downstream from the upstream boundary) and marching through the entire flow
field to I = NI1. This procedure is continued (counter IT), with the same global set of
coefficients in the finite-difference equation (3.3.4), until the maximum residual error
RESMAX (flowchart) encountered anywhere in the flow field is less than the input value
of EPSR, oruntil IT equals the input value of ITMAX. At this point, 2 new set of
coefficients is generated (in subroutine COEF, by using major parameters determined in
subroutine VARI); the error (ERRAR) in the downstream boundary area (expressed as a
decimal fraction of the correct value) is computed (flowchart); and the procedure is
repeated. This process is continued (counter ITER) until the maximum residual error
REMAX (flowchart) encountered anywhere in the flow field on the first pass with a new
set of coefficients is less than 0.002 (provided ITER > 4), or until the value of ITER is
equal to the input value of ITERMX (flowchart). This concludes the solution of the
governing equation (3.3.4), which, as indicated on the flowchart, may also be concluded
sooner if the input value of ISOLV is equal to 1 (section 4.4).

The flowchart for the main program involves 10 (of 21) major external subroutines.
These are described shortly.

5.1.1 Input ICONX. - In the main program, to achieve better accuracy and to speed
up the solution, the new global set of coefficients (for the governing equation) calculated
after each major iteration (ITER) is iterated (counter ICON). This iteration is continued
until ICON is equal to the input value of ICONX (flowchart). However, to further
shorten the solution time, the value of ICONX is reduced by 1 after every seven major
iterations (ITER) until a2 minimum value of 3 is attained, after which ICONX remains
constant. (If the input value of ICONX is less than 3, it is changed to 3 in the main
program and remains constant.)

5.2 Subroutine VARI. - Except for the main program, subroutine VARI is the most
important routine in program DIN3D1. After each major iteration (ITER counter in main
program), this subroutine determines, at every grid point in the flow field, the direction
cosines of the unit vectors €, €y, and €3 (section 3.4); the x,y, and z coordinates (section
3.5); and the parameters A, B, and © and the coefficient C¢ (sections 3.3 and 4.2
(constraint 5)). The procedure is outlined in the simplified flowchart. In general, this
procedure is as outlined in part I of this report (pp. 56 and 57, ref. 1). For 2 given poten-
tial surface I, the overall approach in subroutine VARI is to compute the direction cosines
of the unit vectors €j, €y, and €3 on potential surface I+ 1 from their known values on
potential surface I and from their derivatives with respect to ¢ onboththe I and I+ 1
surfaces, as given by equation (3.4.2), for example. Because the derivatives of the direc-
tion cosines on surface I+ 1 depend on the direction cosines themselves, the procedure is
iterated three times (IT2.£Q.3, flowchart). Afterward (IT1.GT.1, flowchart) the direction
cosines of the unit vector €] are determined in subroutine ANGL (flowchart) by a new
method based on their known values at the primary streamline location (specified by the
input values of JX and KX; section 3.6 and fig. in section 3.5) on potential surface I+ 1
and from their derivatives with respect to ¥ and .
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i

Simplified flowchart of subroutine VARI

These ¥ and m derivatives of the three direction cosines of €] are obtained by the
following procedure. The derivatives with respect to ¢ are obtained from the simulta-
neous solution of the following three equations: (1) the ¥ derivative of the direction-
cosine law (eq. (3.4.1)), (2) the continuity equation (16c) from reference 1, and (3) the
equation (5.2.1). This equation is obtained by adding the irrotationality equations (14c)
and (14d) from reference 1 to obtain 3 cos ©/3¢, after which equations (13g), (16¢), and
{16d), also from reference 1, are introduced to give

€3 B3y " 2B

851 1 [8 cos O

30 -cose<2 30 + 3¢

dlng J9lmA dInB
+ 3¢ >] (5.2.1)
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In a similar fashion, the derivatives with respect to m are obtained from (1) the
direction-cosine law, (2) the continuity equation (16d), and (3) equation (5.2.1) combined
with equation (13g) from reference 1 to give

O€E,
_ . _1 1 |3cos® dlng 9lnA 3InB
€ Bn A [_—a(p - cos © <Z 3% * 8¢ * do (5.2.2)

This new method for finding the direction cosines of €; is needed to achieve truly
parallel flow in the downstream boundary region. Using this method in subroutine ANGL,
the procedure (in subroutine VARI) is to iterate NTRY additional times (where, if the
input value of NTRY is less than 2, the program sets NTRY equal to 2).

Finally, as shown in the flowchart, subroutine VARI determines the x,v,z coor-
dinates of the physical flow field (sections 3.5 and 3.6), the distortion angle © (section 4.2
(constraint §)), the continuity parameters A and B (section 4.2 (constraint 6)), and the
coefficient Cg, which is required by the finite-difference equation (3.3.4).

Subroutine VARI is called from the main program (section 5.1) and from subroutine
PUTOUT (section 5.18).

5.2.1 ICX, ICY, and ITH counters. - If the three simultaneous equations (e.g.,
eq. (3.4.2)) for the derivatives of the three direction cosines of each of the unit vectors
€1, €9, or €3 are not independent, their determinant D will become zero. Thus, in
subroutine VARI, if -0.00001 < D < 0.00001, D is set equal to +0.00001, and the counter
ICX is increased by 1. (This condition can occur when the solution is diverging, and
failure usually occurs soon after.) If, for a given potential surface I, the value of ICX is
greater than zero, a CAUTION note appears in the intermediate printout, or if the value
is greater than 10, another note appears and the solution is stopped.

If the absolute value of any direction cosine, obtained in subroutine VARI from the
derivatives of the three direction cosines, is greater than 1.0, that value is changed to
+1.0, and the counter ICY is increased by 1. If, for a given potential surface I, the value
of ICY is greater than zero, a CAUTION note appears in the intermediate printout. If
the value is greater than 10, another note appears and the solution is stopped.

Also, in subroutine VARI, the "distortion" angle © is constrained to values between
5° and 175° (section 4.2 (constraint 5)). If © is less than 5° or greater than 175°, cos © is
set equal to 0.9962, and the counter ITH is increased by 1. If, for a given potential sur-
face I, the value of ITH is greater than zero, a CAUTION note appears in the interme-
diate printout. If the value is greater than 10, another note appears and the solution is
stopped.

5.2.2 Averaging coefficients CAVD, CAVN, CAVX, CAVY, and CAVZ. - In
subroutine VARI, during the iterations involving direction cosines and their derivatives,
the new values are averaged with the previous values by the input values of CAVX and
CAVD, respectively, where CAVX and CAVD are the decimal fractions of the previous
(0ld) values entering into the weighted average.

Likewise, the input values of CAVN, CAVY, and CAVZ are the decimal fractions
of the previous values of the continuity parameters A and B, the coefficient C¢

(eq. (3.3.4)), and the cosine of the "distortion" angle ©, respectively, that enter into the
weighted average with the respective new values.




For design problems involving lateral velocity distributions to achieve the desired
shapes of the downstream boundary, the input value of CAVN can be as as low as 0.0,
and certainly no higher than 0.1. In effect, the new values of A and B are not averaged
with the previous values.

5.3 Subroutine AERIA. - Given the incremental lengths S1, ..., S6, shown in the
figure, subroutine AERIA determines the incremental area DAREA of an incremental,

curved surface bounded by four, essentially straight, incremental lines. The area is
divided into two sets of triangles by S5 and Sé6. For each of these four triangles

AA =[s (s - aXs - b)(s - t:)]l/Z (5.3.1)

where

-axbre (5.3.2)
Thus, s is the semiperimeter of the triangle, and a, b, and ¢ are the lengths of its three
sides. Subroutine AERIA is called from subroutine ERIA, where it is used to compute the
area of potential surfaces. Starting with subroutine AERIA, the subroutines are discussed
in alphabetical order.

5.4 Subroutine AKA. - Subroutine AKA assures that the sum of the direction
cosines squared is equal to 1.0. (section 4.2 (constraint 3)). Subroutine AKA is called from
subroutines ANGL, FINIS, and VARI.

5.5 Subroutine ANGL. - On potential surface I + 1, subroutine ANGL determines
the distribution of the direction cosines of €y, starting from the location of the primary
streamline (input values of JX and KX) and integrating along lines of constant ¥ and m
{egs. (5.2.1) and (5.2.2)). Subroutine ANGL is called from subroutine VARIL.

5.6 Subroutine BOUND. - The physical x,y,2 coordinates of the flow field at all
interior grid points are determined by subroutine VARI. Using these values on a given
potential surface I, subroutine BOUND extrapolates to determine the coordinates XB,
YB, and ZB (and the velocity QB) at every contour point along the boundary of the
potential surface. Subroutine BOUND is called from subroutine PUTOUT.

5.7 Subroutine COEF. - On potential surface I, subroutine COEF determines the
values of the coefficients CO, Cl, C2, etc., in the finite-difference form of the governing
differential equation (3.3.4). Subroutine COEF is called from the main program.
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9.8 Subroutine ENGL. - On potential surface I+ 1, subroutine ENGL determines
the ¢ and m derivatives of the direction cosines of €. These derivatives are required
to obtain the direction cosines of €j. Subroutine ENGL is called from subroutine ANGL.

5.9 Subroutine ERIA. - On potential surface I, subroutine ERIA computes the flow
area (dimensional) of the potential surface. Subroutine ERIA is called from subroutine
FINIS.

5.10 Subroutine FINIS. - Starting at potential surface NI - 1, subroutine FINIS
determines the values of A, B, THET, and Cg, and of the x,y,z coordinates at every
internal grid point on the downstream potential surface NI. This subroutine assumes that
at the downstream boundary the ¢ derivatives of all direction cosines are zero. Sub-
routine FINIS obtains the downstream flow area at NI - 1 by calling subroutine ERIA.
Subroutine FINIS is called from the main program and from subroutine PUTOUT.

5.11 Subroutine FIRST. - On potential surface I, subroutine FIRST establishes the
values of the variables appearing in the coefficients (egs. (3.3.5)) of the finite-difference
form of the governing differential equation (3.3.5). Subroutine FIRST is called from the
main program.

9.12 Subroutine FLAR. - Subroutine FLAR computes the sum (EXFLAR) of all
incremental flow areas bounded by four internal grid points on potential surface I. Sub-
routine FLAR is called from subroutine ERIA, which adds to the value of EXFLAR all of
the incremental areas adjacent to the potential surface contour.

5.13 Subroutine GRID. - Subroutine GRID determines the area of the upstream
boundary surface and the distance P around its contour. This subroutine also determines
the grid spacings ag, a3, a5, and ag (second fig. in section 3.2) on the potential surfaces.
Further details regarding the potential surface grid are given in section 7.1 of this report.
Subroutine GRID is called from subroutine PUTIN.

5.14 Subroutine ONEST1. - On potential surface I, during the first major iteration
(ITER = 1 only), subroutine ONEST1 determines the parameters A, B, Cc, and THET at
every internal grid point. This subroutine assumes that the total curvatures Ky and Ky
of the stream surfaces are zero, that cos © (i.e., THET) is also zero, that

1/2
A= <9> (5.14.1)
q
and that
B-A (5.14.2)

Subroutine ONEST1 is called from the main program.

5.15 Subroutine PARAM. - On potential surface I, subroutine PARAM determines
the values of all variables required to compute the coefficient C¢ in equation (3.3.4).
Subroutine PARAM is called from subroutine VARI.

5.16 Subroutine POTS. - On potential surface I + 1, subroutine POTS determines
the distribution of the x,y,z coordinates of the internal grid points, starting from the
known values of X,y, and z for the primary streamline at JX,KX (fig. in section 3.5) and
integrating in the ¥ and m directions (section 3.6). Subroutine POTS is called from

" subroutine VARI.




5.17 Subroutine PUTIN. - Subroutine PUTIN reads and writes all input data required
by program DIN3D1. Detailed descriptions of these data are given in section 7.3. Sub-
routine PUTIN is called from the main program.

5.18 Subroutine PUTOUT. - Subroutine PUTOUT prints those results of the solution
that are requested by subroutine PUTIN. There are three output tables: (1) output table I
(internal grid points), (2) output table II (coordinate points along contours of selected
potential surfaces), and (3) output table III (coordinate points along selected streamlines).
For details of the data reported in each of these tables, see section 8.0. Subroutine
PUTOUT is called from the main program.

5.19 Subroutine RELAX. - At every interior grid point on potential surface I, sub-
routine RELAX reduces the residual error & (section 3.3) to an absolute value less than
the current value of EPSX by varying the value of Qq in the finite-difference equation
(3.3.4). (The initial value of EPSX, which is 400 times the input value of EPSR,
decreases 12 times by a factor of 0.5, after which its final value is approximately 0.1
times the input value of EPSR.) This subroutine uses an overrelaxation coefficient, the
input value of which is ORELAX. The relaxation process is continued until the maximum
residual error everywhere on the potential surface is less than 0.1 times the input value
of EPSR oruntil ITX is equal to the input value of ITXMAZX, whichever occurs first.

During the relaxation process the program marches across the potential surface first
from left to right (increasing ¢ index ]), then from top to bottom (decreasing 7 index
K), next from right to left (decreasing J), and then from bottom to top (increasing K).
Subroutine RELAX is called from the main program.

5.20 Subroutine RESID. - Subroutine RESID determines the residual error at every
interior grid point on a given potential surface I. Subroutine RESID is called from the
main program.

5.21 Subroutine START. - For ITER greater than 1, subroutine START establishes
the values of certain variables (€7, €y , €3, X, ¥, 2, Q, RHO, THET, A, and B) at potential

surface I = 1. Subroutine START is called from the main program and from subroutine
PUTOUT.

5.22 Subroutine VELD. - From various input data, subroutine VELD determines the
input velocity distribution on the lateral boundary of the flow field. From this distribu-
tion, it estimates initial values of velocity at all interior grid points. For more detailed
discussion of the input velocity distribution on the lateral boundary, see section 7.2.
Subroutine VELD is called from subroutine PUTIN.

6.0 MISCELLANEOUS FEATURES OF PROGRAM

Various special features of the program, in addition to those already discussed, are
described in this section. These features relate mainly to user options and to input param-
eters affecting the running time and accuracy of the calculations.

6.1 Option IFLUID. - The input option I[FLUID relates to the type of fluid used in
the duct design. At present, provision has been made for two types: incompressible fluids
{(IFLUID = 1), and perfect gases (IFLUID = 2). For incompressible fluids, no additional
inputs are required (e.g., the fluid density is not required). For compressible fluids, two
additional inputs are required: the upstream Mach number AMU, and the ratio of specific
heats GAM.
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The following three figures show that compressibility, as measured by AMU (all
other factors, including the ratio 2.0 of downstream to upstream velocity, being equal),

AMU = 0,40; A8 = 110, 9%6°




affects the turning angle, and of course, the magnitude of the downstream area. The
incompressible solution and that for AMU = 0.01 are essentially equal.

If other types of fluid are required, additions can be made to the code in subroutine
PUTIN. Of course, appropriate additions to the code must be made throughout the pro-

gram, wherever the static density ratio p appears.

6.2 Option ISYM. - Many duct designs have planar symmetry; that is, the duct
shape on one side of the plane is a mirror image of that on the other. If the prescribed
lateral velocity distribution has planar symmetry, so also will the resulting design, pro-
vided that the prescribed upstream boundary configuration is also symmetrical about the
plane. For cases involving planar symmetry, provision is made in the code for solving only
one of the two flow fields on either side of the plane of symmetry. This provision cuts the
running time roughly in half, or alternatively permits a finer grid with the existing

21-by-36 array size.
The input option ISYM relates to three types of symmetry: first (ISYM = 1), there
is no symmetry, or if planar symmetry exists, it is not made use of; second (ISYM = 2),

there is, as shown in the following figures,
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symmetry about a plane of constant y (i.e., a plane normal to the y axis of the upstream
boundary (fig. in section 3.5)); and third (ISYM = 3), there is, as shown in the following
figure, symmetry about a plane of constant z.

Both types of planar symmetry have been introduced because in program DIN3D1
the 21-by-36 arrays corresponding to the y and 2z directions, respectively, are not
square.

6.3 Option IPLOT. - Because the output for three-dimensional solutions is usually
very large, some sort of graphics display is almost a necessity. In program DIN3D1, the
display data consist of the x,v,z coordinates of selected points along the contour of
every selected potential surface IPS(200). These same points correspond to selected
streamlines ISL(200) on the lateral boundary. The result is a three-dimensional plot of
the lateral boundary of the flow field (i.e., the duct surface) consisting of a network of
potential surface contours and streamlines as shown by figures in this report. (These same
data are also printed in output table II (contour data, section 8.3) and output table III
(streamline data, section 8.4).)

These display data are obtained by setting the input value of option IPLOT equal
to 1. (For no graphics display data, the input value of IPLOT is zero.) These graphics
data, which normally go to tape or disk, are provided for at the end of subroutine PUTOUT
(section 5.18). It is assumed that a three-dimensional graphics program is available to the
user, and only the following raw data, in the order presented, are supplied by program
DIN3D1:

NI total number of potential surfaces from upstream boundary to
downstream boundary. (NI is computed by the program from the
input value of NP (number of potential surfaces for which data
are specified) and NSD (number of equal subdivisions along the
principal streamline between each of the NP potential surfaces);
NI = (NP - 1) NSD + 1.)

NCP total number of contour points around each potential surface.
(Each contour point corresponds to a streamline on the lateral
boundary, so there are NCP streamlines.)




NPS number of potential surfaces to be plotted and printed out in
table II (maximum, 200)

NSL number of streamlines to be plotted and printed out in table III
(maximum, 200)

I[PS200) index values IY of NPS potential surfaces to be plotted and
printed (maximum, 200)

ISL(200) index values IX of NSL streamlines to be plotted and printed
(maximum, 200)

XBASLIX),IPS{IYY X,¥,2 coordinates of contour points around potential surfaces
YBISLIX),IPS(IYY and corresponding points along streamlines on lateral boundary
ZBASLAIX),IPSUIY)

6.4 Overrelaxation factor (ORELAX). - At any point in the ¢,¥,n flow field, the
residual error @ in the governing equation (3.3.4) can be eliminated by an incremental
change AQg in the local value of Qq. From equation (3.3.4), this value for AQq is
given by

AQ

2
0= Co (6.4.1)

To speed up the iterative process involved in the global solution of equation (3.3.4), the
local incremental changes given by equation (6.4.1) are multiplied by the input value of
the overrelaxation factor ORELAX. Thus,

AQO = (é%)(ORELAX) (6.4.2)

where
1.0 ¢ ORELAX < 2.0 (6.4.3)

The optimum value of ORELAX for the shortest running time probably varies somewhat
with the boundary conditions of the problem. A preliminary investigation indicated an
approximate value of 1.35; however, the user is encouraged to try other input values.

6.5 Accuracy (EPS and EPSR). - The input values of EPS and EPSR determine
the accuracy of various iterative processes in the program. The input value of EPSR
relates to the solution of the governing equation (3.3.4) by finite-difference methods. It
is the maximum allowable value of the residual error # at any point in the flow field
after the iterative solution has been completed globally for a given (fixed) set of the

coefficients Cg, Cqy..., C4. The input value of EPS relates to other iterative processes.

The program uses double precision. The input values of EPS and EPSR used for
the examples in this report were both 0.000005 and occasionally an order of magnitude
less. Because of the dimensionless form under which the solutions are obtained, the
magnitudes of EPS and EPSR are independent of the size of the flow field. However,
for comparable accuracy in solving the governing equation (3.3.4), the greater the number
of grid points on a potential surface, the smaller the input value of EPSR, because the
smaller will be the dimensionless grid spacings aj,...,a¢ in the coefficients of equation
(3.3.4).
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7.0 INPUT TO PROGRAM

The two major inputs to the program are the shape of the upstream boundary with
its associated grid and the velocity distribution on the lateral boundary of the duct. These
inputs are discussed in detail in the next two sections, after which a formatted, line-by-
line description of the complete input is given. This latter section constitutes a users
guide for preparation of the input.

7.1 Upstream boundary shape and associated grid. - The shape of the upstream
boundary is specified by the coordinate points of its contour on the v,z plane for x = 0.
These coordinate points are located at every intersection of the contour with a specified
(input) grid of YG(]J) and ZG(K) lines in the Y,Z plane. Thus,
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The coordinate points [YC(1), ZC(D)],..., (YC(NCP), ZC(NCP)] are numbered counter-
clockwise and consecutively from 1 to NCP, where the maximum allowable value of
NCP is 200. The starting point is arbitrary, except for cases using planar symmetry
(ISYM equal to 2 or 3), which are discussed later. The YG(]) and ZG(K) grid lines, at
which the contour coordinate points occur, are numbered 1 to NJ and 1 to NXK,
respectively, where the maximum allowable values of NJ and NK are 21 and 36,
respectively.

The spacing (aj, ag, a5, and ag) of the grid lines is arbitrary, except that at least
three internal grid points (i.e., intersections of grid lines) must lie along every internal
grid line segment bounded by the contour and at least two external grid points must lie
along every external grid line segment bounded by the contour. It is also prudent to keep
the grid spacings as nearly constant as the contour shape and other considerations permit
and not too different from the a; and ag spacing in the ¢ direction (second fig. in
section 3.2). Of course, grid size affects running time. Doubling the grid spacing on
potential surfaces, but leaving the spacing between potential surfaces unchanged,
decreased CPU time by more than 75 percent in the following examples.
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The shape of the contour is completely arbitrary (but see section 4.1) except that
(see following figure) (1) every contour point must be the end point of at least one internal
grid line, (2) any interior straight line drawn between two contour points that are not

Fine grid; ITER

adjacent must cut at least one grid line, and (3) unless a contour point lies on a grid point,
it must be at least 10 times the input value of EPS away from any interior grid point.
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Because of the approximate nature of the solutions (section 4.0), a "kink" may
develop in the duct boundary if an external grid point is too close to two adjacent contour
points along the boundary, particularly if the upstream boundary configuration is too
complex or convoluted. This "kink" occurs because the X,v,z2 coordinates at boundary

?

1@
Boundary

%)))%%3 A

o0 o
Exterior - a .b °®
grid point —~

point A are obtained by extrapolating from the corresponding values at the interior
points 1, 2, and 3, whereas the coordinates at boundary point B are obtained by extrap-
olating from the interior points a, b, and c¢. The "kink" is most easily eliminated by

shifting one of the two grid lines so that the points A and B come together as shown in
the following figure.
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For planar symmetry solutions (section 6.2), only one of the two symmetrical halves
of the upstream boundary configuration is used. If the plane of symmetry is normal to the
Y axis (ISYM = 2) as shown, the left half must be used, and the contour points are num-
bered in the counterclockwise direction from 1 to NCP, starting at the plane of
symmetry.

1] 1p=1

_— Y plane of symmetry
(through grid line)

NCP
’Y

If the plane of symmetry is normal to the Z axis (ISYM = 3), the lower half must be
used, and the contour points are numbered in the counterclockwise direction from 1 to
NCP starting at the plane of symmetry as shown. Note that for ISYM equal to both 2

ZA
~ Z plane of symmetry
/ {through grid line)

1 NCP

and 3, the input location (JX,KX) of the primary streamline must be on the plane of
symmetry.

These various upstream boundary contours in physical X,Y,Z space are also the
shapes of all potential surfaces in transformed ¢,¥,n1 space, because paired values of Y
(equals ¥) and Z (equals m) are constant along streamlines (section 3.2).

7.2 Prescribed velocity distribution on surface of duct. - The velocity distribution
on the lateral boundary of the duct could be specified in a perfectly general, continuous
way {(but see section 4.1) at each of the NCP coordinate points along the boundary
contour {section 7.1) for each of the NI potential surfaces from the upstream boundary
{I = 1) to the downstream boundary (I = NI), where the maximum allowable value for both
NCP and NI is 200. Because this is a large amount of input data (200 x 200}, for conven-
ience, in program DIN3D1, the velocity distribution on the lateral surface is specified by
two components. First, the distribution of velocity QP(D) is specified as a function of
distance SP(I) along the principal streamline (input value of IP; figs. in section 7.1).
Thus,
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Program assumes straight fines
between adjacent points

Downstream
region

QP{D)

| Upstream _ |
region
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I

SP{1) SPINI)
SP(I)

where QP(D) is expressed as a ratio of the upstream velocity, and the dimensional unit
for SP(I) is the same as for YG(J) and ZG(K) (section 7.1). The velocity QP(D is
constant in the upstream and downstream regions, which regions should normally be at
least two hydraulic diameters of their respective flow areas in extent. These regions of
constant velocity on the lateral boundary are required to justify the assumption of con-
stant velocity over the upstream and downstream flow areas.

Second, but only if the input value of option IVEL is 1, the velocity variation DQ
around the contour of each potential surface, which contour in @,¥,m space is the same
as the upstream contour (section 7.1), is specified by

3

— DPOL(D) DP1AD DP23(T) —~

= XP(D)

<

- DQAMPII)

Velocity variation DQ around contour

Decimal fraction, P, of distance around contour

In this figure, DQAMP(I) is the amplitude (plus or minus) of the velocity variation DQ
and P is the decimal fraction of the distance around the contour. The XP(I) value of P
locates the principal streamline IP relative to the velocity variation with P. The vari-
ation in velocity with P is, therefore, specified for all potential surfaces by DPOL(D,
DP12(D), DP23(D), DQAMP(I), and XP(D) as functions of SP(I) fromI=1,...,NI. As for the
distribution of QP(I) in the previous paragraph, the distributions of these parameters
should also be constant in the upstream and downstream regions, and the values of
DQAMP(I) must be zero.

In the regions of P defined by DPOL(I) and DP23(D) in the figure, the velocity
variation DQ is given by the cubic equation

DQ =2+ bP + cP2+dP3 (7.2.1)




where the four coefficients a, b, ¢, and d are fixed by the four conditions

d(d% ) =0 at the two end points
DQ =0 at one end point

DQ = DQAMP(D) at the other end point

To simplify the input further, values of these parameters, as well as of QP(I), need
not be specified at all values of I, but only at NP values, where

NI=(NP-1)NSD +1 (7.2.2)

in which NSD is the specified (input) number of equal subdivisions between adjacent,
specified NP wvalues of the parameters. The program assumes linear variations in the
parameters between the specified values.

For the "equilibrium" velocity distributions described in appendix A (input values of
option IVEL equal to 2 or 3), in addition to the prescribed velocity QP(I) as a function
of distance SP(I) along the primary streamline, only the amplitude DQAMP(I) of the
velocity variation DQ (see previous fig.) is specified. The parameters DPOL(D), DP12(D),
DP23(M), and XP{) must be omitted. Also, if the input value of ISYM is 2, the input
value of IVEL must not ve 3; and if the input value of ISYM is 3, the input value of
IVEL must not be 2.

Option IVEL = 4 can be used only with option ISYM equal to 2 or 3 (planar symme-
try cases). Here, only the parameters DP23(I) and XP(D) must be omitted, it being
understood that for planar symmetry

DP23(D = DPOLD (7.2.3)

and

XP(M = 0.5 + DPOL(D + 0.5 x DP12(D (7.2.4)

As for optional input IFLUID (section 6.1), provision is also made in subroutine
PUTIN for adding new types of option IVEL by additions to the code, and of course,
appropriate additions to the code must also be made in subroutine VELD.

7.3 Line-bv-line input for program DIN3D1. - This section should be used when
preparing the formatted, line-by-line input for program DIN3D1. It is also recommended
that sections 7.1 and 7.2 be reviewed before starting.

Line 1 - FORMAT(20A4)
TITLE title (center on field of 80 characters)

Line 2 - FORMAT(20A4)
SUBT1 first subtitle (center on field of 80 characters)

Line 3 - FORMAT(20A4)
SUBT2 second subtitle (center on field of 80 characters)
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Line 4 -

FORMAT(7I10)

IFLUID

ISYM

IGRID

IVEL

IPLOT

ISOLV

ISPACE

Line 5 -

option equals 1 for incompressible flow, 2 for perfect gas (section 6.1)

option equals 1 for complete flow field, 2 for half flow field with planar
symmetry about y plane, and 3 for half flow field with planar symmetry
about z plane (sections 6.2 and 7.1)

option equals 1 for Cartesian YG(]),ZG(K) grid at upstream boundary
(only option) (section 7.1)

option equals 1 for standard, two-component, parametric method of
specifying velocity distribution on lateral boundary of duct (section 7.2,
2 for "equilibrium" velocity distribution with turn in v plane (sections
4.1 and 7.2 and appendix A), 3 for "equilibrium" velocity distribution with
turn in z plane (sections 4.1 and 7.2 and appendix A), and 4 for cases
with ISYM wvalues of 2 or 3 only (section 7.2)

option equals zero for no graphics output, 1 for three-dimensional
graphics output (section 6.3)

option equals zero if built-in criteria for successful solution are not
used, 1 if criteria are used (section 4.4)

option equals zero if grid spacings (second fig. in section 3.2) for all
internal grid points are not printed in output (space-saving option), 1 if
spacings are printed

FORMAT(5I10)

ITERMX

ITMAX

ITXMAX

ICONX

NTRY

Line 6 —

maximum number of major iterations (ITER) allowed; value depends on
circumstances of case involved (sections 3.3, 4.4, 4.5, and 5.1)

maximum number of IT iterations allowed (each iteration involves
entire flow field; values of coefficients Cc, Cq, Cy,...,C4 in equation
(3.3.4) are unchanged for all IT iterations; recommended value is 250)
(sections 3.3 and 5.1)

maximum number of passes allowed for iterative, finite-difference
solution of governing differential equation (3.3.4) on a given potential
surface ¢; recommended value is 100 (section 5.19)

maximum number of ICON iterations, in main program, on coefficients
of governing equation (3.3.4); recommended value is 4 and cannot be less
than 3 (section 5.1.1)

number of iterations, in subroutine VARI, on values of direction cosines;
recommended value is 3 and cannot be less than 2

FORMAT(6F10.3)

CAVD

coefficient for averaging new values of derivatives of direction cosines
with previous values; recommended value is 0.5 (section 5.2.2)




CAVN coefficient for averaging new values of continuity parameters A and B
with previous values; recommended value is 0.5 or less (section 5.2.2 and
appendix C)

CAVP coefficient for averaging values (obtained by two methods) of x,v,z
coordinates at each internal grid point; recommended value is 0.5 or less
(sections 3.6, 4.2(constraint 1), and 4.6)

CAVX coefficient for averaging new values of direction cosines with previous
values; recommended value is 0.2 (section 5.2.2)

CAVY coefficient for averaging new values of coefficient Cg, in the governing
equation (3.3.4), with previous values; recommended value is 0.5 or less
(section 5.2.2)

CAVZ coefficient for averaging new values of THET (cosine of "distortion"
angle ©) with previous values; recommended value is 0.5 or less (section
5.2.2)

(If IFLUID = 1, incompressible flow, go to line 8.]

Line 7 - FORMAT(2F10.4)

AMU upstream Mach number (section 6.1)
GAM ratio of specific heats (section 6.1)

Line 8 - FORMAT(2I10)

TX value of J for primary streamline (fig. in section 3.5; sections 3.6, 5.2,
and 7.1)
KX value of K for primary streamline (fig. in section 3.5; sections 3.6, 5.2,

and 7.1) (For input values of ISYM equal to 2 and 3, the primary
streamline (JX,KX) must lie on the plane of symmetry.)

Line 9 - FORMAT(3I10)

NJ number of YG(]) grid lines; maximum value is 21 (section 7.1)
NK number of ZG(K) grid lines; maximum value is 36 (section 7.1)
NCP number of contour coordinate points around upstream potential surface;

maximum value is 200 (sections 6.3 and 7.1)

Line 10 - FORMAT(8F10.6)

YG(T) NJ values of Y grid lines; same dimensional unit of length used for SP
on line 15; 6—decimal accuracy recommended (sections 3.2, 3.5, and 7.1)

Line 11 - FORMAT(8F10.6)

ZGK) NK wvalues of Z grid lines; same dimensional unit of length used for SP
on line 15; 6-decimal accuracy recommended (sections 3.2, 3.5, and 7.1)
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Line 12 -

FORMAT(8F10.6)

YC((IX) NCP values of Y for coordinate points along boundary contour starting
at contour point 1 (which has arbitrary location for ISYM =1 but must
lie on the plane of symmetry for ISYM equal to 2 or 3); contour points
must be read sequentially in counterclockwise direction; same
dimensional unit of length used for SP on line 15; 6-decimal accuracy
recommended (sections 3.2, 3.5, and 7.1)

Line 13 - FORMAT(8F10.6)

ZC(IX) NCP values of Z for coordinate points along boundary contour starting

at contour point 1; see YC(IX), above, for further comments
Line 14 - FORMAT(3I10)

IP contour coordinate point corresponding to principal streamline; for
ISYM equal to 2 or 3, I[P must equal 1; for "equilibrium"” velocity
distributions (IVEL equal to 2 or 3), see appendix A (first and last figs. in
section 7.1)

NP number of stations (velocity potential surfaces) at which parameters are
specified for velocity distribution on lateral surface; quantity
(NP - 1)NSD + 1 must not exceed 200 (section 7.2)

NSD number of subdivisions between each of the above NP stations
(section 7.2)

Line 15 - (NP lines, one for each station), FORMAT(6F10.5, F10.6)

QP(M velocity (ratio) distribution along principal streamline (IP), expressed as
ratio of upstream velocity; 5-decimal accuracy recommended
(section 7.2)

SP(D distance along principal streamline; any unit of length permittied, and
value of SP(I) at upstream boundary need not be 0.0 (section 7.2)

DPOLI(D) percent of contour length (second fig. in section 7.2); omit if IVEL
equals 2 or 3 (section 7.2)

DP12(D) percent of contour length (second fig. in section 7.2); omit if IVEL
equals 2 or 3 (section 7.2)

DP23( percent of contour length (second fig. in section 7.2); omit if IVEL
equals 2, 3, or 4 (section 7.2)

DQAMP(D amplitude (second fig. in section 7.2) of velocity variation DQ around

contour of potential surface; velocity expressed as ratio of upstream
velocity; DQAMP(I) may be positive or negative; DQAMP(I) must be 0.0




in upstream and downstream regions of duct (first fig. in section 7.2;
section 7.2)

location (percent of contour length) of principal streamline relative to
velocity variation around contour of potential surface (second fig. in
section 7.2); omit if IVEL equals 2, 3, or 4 (section 7.2)

I value of initial potential surface for which output data are printed in

I value of final potential surface for which output data are printed in
table I5 [Z < NI (total number of potential surfaces; section 6.3); if
IZ < IA, table I is omitted in printout

number of potential surfaces for which output data at boundary contour
points are printed in table II (and saved for three-dimensional graphics if
input value of IPLOT is 1); NPS < 200; if NPS = 0, table II is omitted
and input line 17 is skipped (section 6.3)

number of boundary-surface streamlines for which output data are
printed in table III (and saved for three-dimensional graphics if IPLOT
is 1); NSL ¢ 200; if NSL = 0, table III is omitted and input line 18 is

NPS values of the I values of potential surfaces for which output data
are printed in table II; numbered sequentially, starting from lowest
value, but numbers can be skipped (section 6.3)

NSL values of the I values of boundary contour points for which
streamline data are printed in table III; numbered sequentially, starting
from lowest value, but numbers can be skipped (section 6.3)

standard maximum allowable error in various iterative procedures;
recommended value is 0.000005 (section 6.5)

XPM
Line 16 - FORMAT(4110)
IA
table I
17
NPS
NSL
skipped (section 6.3)
Line 17 - FORMAT(8I10)
IPS(D
Line 18 - FORMATI(8I10)
ISL(D
Line 19 - FORMAT(2F10.7,F10.4)
EPS
EPSR

ORELAX

maximum allowable value of residual error # in finite-difference
solutions of equation (3.3.4); recommended value is 0.000005 (sections
3.3, 5.19, and 6.5)

overrelaxation factor (sections 5.19 and 6.4)
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7.4 Sample printout of input data. - Program DIN3D1 prints out the input data in
the same order in which they are read in. A sample printout of the input data follows.

PROGRAM DIN3D1

DESIGN OF THREE-DIMENSIGNAL INTERHNAL FLOW FIELDS
FOR ARBITRARY PRESCRIBED VELOCITY DISTRIBUTIONS
OM LATERAL BOUMNDARY SURFACE

CASE NG. ¥
ELBOW C2
QD/QUY = 2.0 M-UP = 0.%
INPUT DATA
CPTIONS
IFLUID ISYM IGRID IVEL IPLOT ISOLV ISPACE
2 1 1 2 1 1 1

INPUT DATA FOR LIMITS ON YARIOUS ITERATION CYCLES

MAX ITER MAX 17 MaX ITX ICOHX NTRY
ITERATION ITERATIONS ITERATIOHNS ITERATIONS ITERATIONS
1z 250 1090 % 3

INPUT DATA FOR VARIOUS DAMPING COEFFICIENTS
CaAVD CAVN CAVP CAVX CAVY CAVZ
0.508 0.500 £.200 0.200 0.500 0.500

INPUT DATA FOR PERFECT GAS (IFLUID = 2)

UPSTREAM RATIO OF
MACH NO. SPEC HT5

0.64030 1.40C0

INFUT DATA FOR PRIMARY STREAMLINE
J-VALUE K-¥ALUE

(X3 (KXD

7 6




INPUT DATA FOR GRID SYSTEM ON UPSTREAM BOUNDARY SURFACE (IGRID = 1)

NO. OF Y NO. CF Z NO. OF POINTS
GRID LIKNES GRID LIHNES ON BOUHDARY
i3 11 28

INPUT DATA FOR UPSTREAM GRID (CONTIHUED)

Y-VALUE
GF GRID

e
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3 (2
e

HPN SO LN OIN
o ot €23 GO~ A OGN T L P B

N
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,L\

o]

Ut

et et fd
fd fond ot

INPUT DATA FOR UPSTREAM GRID (CONTINUED)

Z-VALUE
0F GRID

1.00000¢8
1.2%0635
2.318019
3.909310
.704505
.5000¢C8
.2954%5
.0902%8
681981

9.703%365
1¢.0000¢090

MO SNOW NN R
OO\JO\UM.\U

et el

INPUT DATA FOR UPSTREAM GRID (CONTINUED)

Y-VALUE Z-YALUE
I CF CONTOUR OF CONTOUR
1 5.50000¢ 1.00000¢0
2 6.295455 1.00803G0
3 7.0809%920 1.000975¢0
4 7.836485 1.076871
5 8.681%313 1.2%50635
& 10.272%71 2.31801%
7 11.300355 3.90901¢
8 11.52011¢ 4.706505
9 11.5909%¢0 5.5400¢0¢C¢
10 11.52011¢9 6.295495
11 11.360355 7.0239¢%0
12 10.272971 §.681931
13 8.681%8¢ 9.709345
14 7.8366435 9.92912%
15 7.0903%8 10.060C2C0
16 §.295 493 10.000900
17 5.50008 10.000009
18 @.704505 9.92312¢
19 3.9094518 9.708365
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20
21
22
23
24
25
26
27
28

INPUT DATA FOR VELOCITY DISTRIBUTIOR OH LATERAL BOUNDARY SURFACE (IVEL

PRIN

STREA

WO RSN

bt et
el

fod o ot =t
[$) IR SN IS

Pt
fo))

ot bt
o~

19

NN NS
N

i

3
Ui 5 i

LA
~ e

ISR
™

Q

23

2.313019
1.2905633
1.070871
1.00600C0
1.070871
1.2%0635
2.31801¢
3.%09018
%.7045035

CIPAL NG.

MLINE
16
VEL. ON

PRINCIPAL
STREAMLINE

CF
STA

[ T T TR

RN D OTON 00

DN O SNTUTNY O
~d A B S0 €3 A N0 0

3 €3 00 A2 D UL

G CN D AN 3 DV 0D
R e e I RNs NG

fo2 G100 O UL UT O

1.000000

b [t bt fod fod et et et e el et ot et bt

.0
.8
.0
.0
.0
.8
.0

gcago
gsace
62940
00000
60000
06000
19740

.076100

.1

56300

.25%300

.3
.5

76200

goGo0

.623590
.760700

.8

43800

1.925200
1.988300
2.000000
2.000000
2.0006000

[ASEISEAVELVELS LAV

INPUT DATA FOR PRINT FORMAT

MIN I-VYALUE
CF POT SURF
(TABLE ID

1

MAX I-VALUE
O0F POT SURF

(TABLE 12

29

SPEC. HC. OF
TIONS SUBDIVISIONS
29 1
DISTAMCE
ALONG DEL-Q
STREAMLINE AMPLITUDE
0.000G6C0 0.000000
1.500000 §.000300
3.000000 0.0006000
¢.500C00 06.000000
5.000200 0.003320C0
7.50006C0 ¢.00000C0
F.00006G8 0.0600090
10.500000 -0.01%700
12.00C000 -0.074100
13.580038 -0.156300
15.000008 -0.25%300
16.500060 -0.356500
18.000060 -0.425200
19.5008000 -0.667500
21.0000C3 -0.481600
22.500000 -0.467600
24.000000 -0.425900
25.5000090 ~0.356500
27.000000 -3.259300
28.500000 -0.156200
30.000000 -0.074100
31.500000 -9.01%700
33.00080600 0.000000
34.500000 0.008000
36.000000 0.000000
37.500000 0.00000¢0
39.000000 3.0038000
40.500000 0.000C00
42.000000 0.000030
NO OF POT NO OF
SURFACES STREAMLINES
(TABLE ID) (TABLE III)
29 23

)




IHPUT DATA FOR POTENTIAL SURFACES (TABLE II)

NUMBER (NPS)> OF POTENTIAL SURFACES = 2%
I-VALUES OF POTENTIAL SURFACES:

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 2% 25 26 27 28

INPUT DATA FOR STREAMLINES (TABLE III)

NUMBER (HSL) OF STREAMLINES = 28
I-¥ALUES OF CONTOUR POINTS THROUGH WHICH STREAMLINES PASS:

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28

INPUT DATA RELATED TO ACCURACY OF CALCULATIONS

EPS EF5-R 0-RELAX
0.0000005 0.0000005 1.3500

19
29

0

10
20

10
20
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8.0 OUTPUT FROM PROGRAM

The five major outputs from the program are (1) an intermediate printout generated
as the solution progresses; (2) output table I, with data at the internal grid points for the
selected range (IA to IZ) of potential surfaces in X,v,Zz space; (3) output table II, with
data around the contours of selected potential surfaces in X,y,2 space; (4) output
table III, with data along selected streamlines over the full range of potential surfaces
(I equals 1 to NI); and (5) output data to tape or disk for three-dimensional graphics,
provided that the input value of IPLOT is 1. Before printing these five outputs, the
program prints out (1) the maximum Mach number along the principal streamline and
(2) provided that the input value of ISPACE is 1, the values of the six grid spacings
a1,...,a¢ (second fig. in section 3.2) for all of the internal grid points.

8.1 Intermediate printout. - For each pass IT through the entire flow field for
every major iteration ITER (with unchanged values of the coefficients C¢, Cg, Cq5...,Cy
in the governing equation (3.3.4)), the intermediate printout gives the magnitude and
location (I-MAX, J-MAX, and K-MAX) of the absolute value of the maximum residual
error # encountered during the pass. For a given value of ITER, after convergence (# <
EPSR) or after IT becomes greater than the input value of ITMAX, the program prints
the exit flow area EXFLAR (section 5.12) and its error ERRAR (section 5.1), expressed
as a decimal fraction, for each of the ICON iterations (section 5.1.1). Also, any
intermediate messages regarding, for example, the counters ICX, ICY, and ITH
(section 5.2.1) are printed. A sample page of intermediate printout follows.

INTERMEDIATE PRINTOUT

ITERATION ITERATION MAX RES ITERATION EXIT FLOW CORRECT FLOW

ITER IT IN IT I-MAX J-MAX K-MAX ICON AREA (DIM) AREA (DIMD ERROR
1 1 0.8707286 8 7 10 ..
1 2 0.3962490 8 7 8 ..
1 3 U.2352487 7 7 7 .- N
1 4 0.1334014 7 7 7 ..
1 5 0.0794%69%4 6 7 7 ..
1 6 0.0498247 6 7 6 .. N
1 7 0.0313226 6 7 6 ..
1 8 0.0192473 6 7 6 .-
1 9 06.0120385 5 7 6 ..
1 10 0.0073%51 5 7 6 ..
1 11 0.0044359 5 7 6 .-
1 12 0.0027005 4 7 6 ..
1 13 0.0016138 4 7 6 ..
1 164 0.000%475 4 7 6 ..
1 15 0.0005484 4 7 ] ..
1 16 6.0003137 4 7 6 .
1 17 0.0001780 4 7 6 .-
1 18 0.0001002 G 7 6 ..
1 19 0.0000562 4 7 6 .
1 20 0.0000315 4 7 6 .
1 21 0.0000176 4 7 6 .
1 22 0.0000098 4 7 6 .-
1 23 0.0000055 4 7 6 ..
1 24 0.0000031 & 7 6 ..
1 25 0.0000017 3 7 6 ..
1 26 0.0000010 G 7 6
1 27 0.0000005 7 7 6
M 27 .- .- .. 1 49.3908 49.3932 ~0.0000
1 27 4 49.3927 49.3932 ~0.0000
1 27 3 49.3935 49.3%32 0.0000
1 27 4 49.3939 49.3932 9.0000
2 1 0.0682211 12 7 4
2 2 0.0395768 12 7 6
2 3 0.0248684% 12 7 6
2 4 0.0154618 11 7 6
2 5 6.0096363 10 7 6
2 6 0.0060232 10 7 6
2 7 0.0039346 g 7 6
2 8 0.0024947 8 7 6
2 9 0.0016270 8 7 6
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8.2 Output table I. - Output table I gives the values of variables at all internal grid

points for potential surfaces in the (input) range from IA to IZ. The headings in output
table I are as follows:

LT,K
PHI, PSIL,
ETA

X(DIMVD, Y(DIMD,
Z(DIMD

Q/Q-UP

MACH NO.

RO/RO-UP

pP/P-UP

SINCTHED

COS(AL1)...,
COS(GM3)

A,B

grid-point indices in directions of increasing velocity potential PHI,
stream function PSI, and stream function ETA, respectively

at grid point (I,J,K), values of velocity potential and two stream
functions, respectively (sections 3.0 to 3.2)

at grid point (I,],K), values of X,Y,Z coordinates, expressed in same
dimensional unit as input values of SP(I) (sections 3.5 and 3.6)

at grid point (I,],K), value of local velocity divided by upstream velocity
(section 3.3)

at grid point (I,],K), value of local Mach number

at grid point (I,],K), value of local static density divided by upstream
static density (section 3.3)

at grid point (I,],K), value of local static pressure divided by upstream
static pressure. For incompressible flow (IFLUID = 1), P/P-UP is
defined as local difference between total and static pressure divided by
the same difference at upstream boundary (which definition is equivalent
to square of Q/Q-UP) (section 3.3))

sine of "distortion" angle © (sections 3.1, 3.3, and 4.2 (constraint 5))

at grid point (I,],K), values of direction cosines of three unit vectors
€1, €9, and €3 (sections 3.1, 3.4, and 4.2)

at grid point (I,],K), values of continuity parameters (egs. (3.3.2) and
(3.3.3) and sections 3.4 and 5.2)
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OUTPUT TABLE NO.

I
14

14
14
14
14
14

15
15
15
15
15

15
15
15
i5
15
i5
15

15
15
15
15

50

A sample page of output table I resulting from the sample input in section 7.4 follows.

J

10

[T I I T - N ¥ B ) w0 N o n o0 N !

—

O e

K

10
10
10
10

(A} NN NN

[V I T B ¥ B ¥

N

I (INTERNAL GRID POINTS)

PHI PSI ETA X(DIM) Y(DIM) Z(DIM Q/Q-UP MACH NO RO/RO-UP P/P-UP SINCTHET)
COSCAL1> COS(BT1) COS(GM1) COSCAL2> COS(BT2) COS(GM2) COS(AL3) COS(BT3I) COS(GM3) A B
2.51638 0.87683 0.87683 19.7331 7.4296 8.1175 1.5330 0.6269 0.8687 0.8212 1.0000
.9757 ~0.0309 0.2171 0.0316 0.999%5 0.0004 -0.2170 0.0065 0.9762 0.3018 8.7285
2.51638 0.42284 0.99409 19.5401 3.8690 8.9232 1.6026 0.6578 0.8509 0.7%77 1.0000
0.9783 05 0.2060 -0.0209 0.9998 =0.0003 ~0.2059 =0.0045 0.9786 0.7891 0.6952
2.51638 0.51363 0.99409 19.5290 4.5824 8.9232 1.6026 0.6577 0.8510 0.7978 1.0000
0.9785 2060 -0 0.9999 -0.0001 =-0.2060 -0.0023 0.9786 0.7890 0.6954
2.51638 0.60443 0.99409 19.5252 5 2955 8.9233 1. 0.6577 0.8510 0.7978 1.0000
0.9786 2060 ~0.000 1.0000 0.0000 =-0.2060 ~0.0000 0.9786 0.7889 0.6955
2.51638 0.69523 0.99409 19.5290 6 0086 8.9232 1.6026 0.6577 0.8510 0.7978 1.0000
0.9785 -0.0103 0.2060 0.01 0.9%79 0.0001 -0.2060 0.0023 0.9786 0.7890 0.6954
2.51638 0.78603 0.99409 19.54 6.7220 8.9232 1.602 0.6578 0.8509% 0.7977 l.0000
0.9783 -0.0205 0.2060 0.0209 0.9998 0.0003 -0.2059 0.0045 0.978¢6 0.7891 0.6952
2.80440 0.42284 0.03317 23.4195 3. 9438 2.3670 1.2708 8.5134 0.9277 0.9003 1.0000
0.9258 0. 0.3775 -0.0196 8 0.0003 -0.3775 -0.0063 0.9260 0.3083 0.9264
2.80440 0.51363 0.03317 23.4093 4. 6195 2. 1 1.2709 0.5134 0.9277 0.9003 1.0000
0.9259 0 3776 -0.0097 1,0000 -0.0000 —0 377 -0.08032 0.9260 0.3083 0.9263
2.80440 0.60443 0.03317 23.4060 5 2.3672 1.2709 0 513 0.9277 0.9003 1.0060
0.9260 g 776 -0 L..0000 -0.0000 -0. -0.0000 0.9260 0.3083 0.9262
2.804490 0.69523 0.03317 23.4093 5 971% 2 1 1.2709 0 5134 0.9277 0.9003 1.0000
0.9259 -0. 776 .0 1.0000 0.0000 =-0. 6.0032 0.9260 0.3083 0.9263
2.80440 0.78603 0.03317 23.4195 6 472 2.3670 1.2708 0.5134 0.9277 0.9003 1.o0¢0c0
0.9258 -0.0180 0.3775 0.0196 0.9998 -0.0003 -0.3775 0.0063 0.9260 0.3083 0.9264
2.80440 .33204 0.15044 23.0727 3. 1.3129 0.5313 0.919¢0 .8885 1.0000
9318 L3620 0. 7 0 9996 0.0006 -0.3619 -0.0088 0.9522 0.3046 0.8928
2.80440 0.42284  0.15044 23.0555 3 9377 3.2842 1.3130 0.5314 0.9192 887 1.0000
0.9319 0.0182 0.3621 -0 0. 8 0. 4 -0. ~0.0059 0.9321 0.3043 0.893¢0
2.80440 0. 51363 0.15044 23.0453 4 4 3 2843 1.3131 0.531 0.9192 0.8888 l.cp000
21 .0091 £.3622 -0 1. 0.0001 -0. ~0.0030 6.9321 0.30844 0.8929
2.80440 604 43 0.1504% 23.0641% 5 55 3 2 1.3131 0.531¢4 0.9192 0.8888 l1.0000
321 .0000 0.3622 -0.0000 1. 0 ~0.0000 ~-0. -0.0000 0.9321 0.30644 6.8928
2.80440 0. 69523 0.15044 23 0453 5.9745 3.2843 1 31 0.5314 0.9192 0.8388 1.o0000
g. 9321 - 91 0.3622 8 1. ~-0. =-0. 0.0030 0.9321 0.3044 0.8929
2.804640 78603 0.15044 23.0555 6.6533 3.2842 1 3130 0.5314 0.9192 0.8887 1.0000
0.9319 -0.0182 L3621 7 -0. -0.3621 0.0059 0.9321 §.3063 0.8930
2.80440 0.87683 0.15044 23.0727 7. 9 3.2840 1.3129 0.5313 0.9190 0.8385 1.0000
0.9318 ~0.0275 0.3620 0.0297 0.9996 ~-0.0006 ~0.3619 0.0088 0.9322 0.3046 0.8928
2.80440 0.1504% 0.33204 22.6111 1.8814 4.6653 1.3828 0.5614 0.9037 0.8678 1.0000
0.9389 0.0473 0.3408 ~0.0505 0. 7 0.0004 ~0.3405 -0.0143 0.9401 0.79%69 0.8427
2.80440 0.33204 0.33204 22.5550 3.2461 4.6653 1.3828 0.5614 0.90642 0.8685 1.0000
0.939¢6 0 3410 -0.0298 0. 6 0.0003 =0.3409 -0.0085 0.9401 0.7971 0.8625
2.80440 0.42284 0.33204 22.537 3.9290 4.6653 1.3828 0.5614 0.9044 0.8687 1.0000
0.939%9 0. 3410 0. 0. 0.0002 -0.3410 -0.0056 0.9400 0.7972 0.8424
2. 80440 0.51363 0.33204 22.5273 4. .6654 1. 0.5614 0.9044 0.8688 1.0000
.9400 0.00 0.3611 -0.0098 1.0000 0.0001 -0.3411 -0.0028 0.9400 0.7973 0.8423




8.3 Output table II. - Output table II gives the values of variables along the

boundary contour of potential surfaces selected by the input. The headings in output table
II are as follows:

I index number for potential surface (constant PHI)

ICp index number for contour point along boundary of potential surface I
X~-CP(DIVD, at contour point ICP of potential surface I, values of X,Y,Z
Y-CP(DIMD, coordinates, expressed in same dimensional units as input values
Z-CP(DIMD of SP() (sections 5.6 and 6.3)

Remaining headings for table II are defined under output table I (section 8.2). A sample
page of output table II resulting from the sample input in section 7.4 follows.

OUTPUT TABLE NO. II (COORDINATE POINTS ALONG CONTOURS OF SELECTED POTENTIAL SURFACES)
I IcP X-CP(DIM) Y-CP(DIM) Z-CP(DIM) Q/Q-UP MACH NGO RO/RO-UP psP-UP

17 16 23.7339 5.2955 10.6006 1.9259 0.8061 0.7972 0.7281
17 17 23.7365 4.6218 10.6002 1.9259 0.8061 0.7972 0.7281
17 18 23.7679 3.9486 10.5500 1.9216 0.8041 0.7983 4.7295
17 19 23.8549 3.2775 10.3952 1.908% 0.7978 0.8019 0.7361
17 2¢ 24.2632 1.8506 9.666% 1.8498 0.770¢0 0.8176 0.7543
17 21 24.8302 1.1218 8.5152 1.7640 0.7307 0.8395 0.7828
17 22 25.1230 6.9565 7.9289 1.724% 0.7126 0.86495 0.7659
17 23 25.4175 6.9150 7.3359 1.6865 0.6954% 0.8589 0.8032
17 24 25.7139 0.9303 6.7365 1.6502 0.6791 0.8678 0.8199
17 25 26.0126 1.1871 6.1306 1.6155 0.6635 §.8762 0.8310
17 26 26.62138 2.0544% 4.9016 1.5502 0.6345 0.8915 0.8515
17 27 27.0248 3.3597 4.1001 1.5108 0.6171 0.9003 0.8636
17 28 27.1104 4.0064% 3.9286 1.5026 0.6135 0.9024 0.8661
18 1 28.7558 4.6607 4.,8332 1.6238 0.6672 0.87642 0.8284
18 2 28.7537 5.2955 4.8339 1.6238 0.6672 0.8742 0.8284%
18 3 28.7558 5.9303 4.8332 1.6238 0.6672 0.8742 0.8234
18 4 28.7292 6.5655 4.8844 1.6261 0.6683 0.8736 0.8276
18 5 28.6372 7.2027 5.0450 1.6333 0.6715 0.8719 0.8254
18 6 28.2048 8.48%5 5.799%8 1.6678 0.6370 0.8635 0.8143
18 7 27.5470 9.3456 6.9658 1.7241 0.7125 0.8496 0.7560
18 3 27.2229 9.5406 7.5442 1.7538 0.7260 0.8421 0.7862
18 9 26.9008 9.6161 8.1186 1.7844 0.7401 0.8343 0.7760
18 10 26.5803 9.5763 8.6890 1.8162 €.7548 0.8261 0.7654
18 11 26.2611 9.41642 9.2552 1.8491 0.7700 06.8176 0.7543
18 12 25.6212 8.5980 10.3732 1.9186 0.8026 0.7991 0.7306
18 13 25.1999 7.2887 11.0851 1.9664% 0.8253 0.7862 0.7141
18 14 25.1064 6.6260 11.2367 1.9769 0.8303 0.7833 0.7104
18 15 25.0736 5.9610 11.2864 1.9803 0.8320 0.782% 0.7093
18 16 25.0714 5.2955 11.2870 1.9803 0.8320 0.7824 0.7093
183 17 25.0736 6.6300 11.2864 1.9803 0.8320 §.7824 0.7093
18 138 25.1064% 3.9650 11.2367 1.9769% 6.8303 0.7833 6.7104
183 19 25.199%9 3.3023 11.0851 1.9664 0.8253 0.7862 0.7141
18 20 25.6212 1.9930 10.3732 1.9186 06.8026 §.7991 0.7306
13 21 26.2611 1.1768 9.2552 1.8491 0.7700 0.8176 0.75643
18 22 26.5803 1.0167 8.6890 1.8162 0.7548 0.8261 0.7654
18 23 26.9008 0.9749 8.118¢6 1.7844% §.7401 0.8343 0.7760
18 24 27.2229 1.0504 7.5442 1.7538 0.7260 06.8421 0.7862
18 25 27.5470 1.2453 6.9658 1.7241 0.7125 0.8496 0.7960
18 24 23.2048 2.1015 5.7998 1.6678 0.6870 0.8635 0.8143
18 27 28.6372 3.3883 5.0450 1.6333 0.6715 6.8719% 0.8254
18 28 28.7292 4.0255 4.8844 1.6261 0.6683 0.8736 0.8276
19 1 30.2546 4.6668 5.7945 1.7407 0.7201 0.8454 0.7905
19 2 30.2529 5.2955 5.7954 1.7407 0.7201 0.845% 0.7905
19 3 30.2546 5.9242 5.7945 1.7407 0.7201 0.8454 §.7905
19 4 30.2261 6.5533 5.8428 1.7425 0.7209 0.8450 0.7899
19 5 30.1303 7.1844 5.9950 1.7480 0.7234 0.8436 0.7881




8.4 Output table III. - Output table III gives the values of various variables along
streamlines (constant ICP) selected by the input. X-SL(DIM), Y-SL{(DIM), and
Z-SL(DIMD are values of the X,Y,Z coordinates, respectively, along the streamline. The
next four headings are the same as defined for output table II (section 8.3). The last two
headings are the lengths (same dimension as SP(I)) of the streamline ICP computed in
two ways as follows:

I=I
) ) )71/
S-I(DIM) = [(AX) + (AY) + (AZ) ] (8.4.1)
=2
where AX = X(I) - X({I - 1), etc.
and
? g
S-II(DIM) = f £o (8.4.2)
b

A sample page of output table III resulting from the sample input in section 7.4 follows:

QUTPUT TABLE NO. IXII (COORDINATE POINTS ALONG SELECTED STREAMLINES)
Icp I X=SL(DIM} Y-SL{DIM) Z-SL(DIM Q/Q-Up MACH NO RO/RO-UP P/P-UP S-I(DIM) S-II(DIM)

10 18 26.5803 9.5763 8.6390 1.8162 0.7548 0.8261 0.7654% 27.178% 27.2304
18 19 27.9671 9.5391 9.4967 1.8845 G.7866 0.3082 §.7422 28.7838 28.8644
10 20 29.2937 9.5172 10.3293 1.9326 0.8093 0.7954 0.7257 30.3502 30.4165
10 21 30.5765 9.5046 11.1714 1.9688 0.8265 0.7855 0.7132 31.8848 31.9545
19 22 31.8326 9.4984% 12.015¢4 1.9918 0.8375 0.77%92 0.7052 33.3981 33.6695
10 23 33.0760 9.4972 12.8591 2.0000 0.8414% 0.7770 0.702% 34.9008 34.9725
10 24 36.3162 9.6984 13.7032 2.0000 0.8414 0.7770 0.7024 36.4009 36.4725
10 25 35.5565 9.64995 14.5477 2.0000 0.8414 0.7770 0.702% 37.9015 37.9725
10 2¢ 36.7971 9.5000 15.3922 2.0000 0.84%14 0.77790 0.702¢ 39.4022 39.4725
186 27 38.0374 9.5000 16.2365 2.00800 0.3414 0.77790 0.7024 40.9025 40.9725
10 23 39.2769 9.5001 17.08038 2.0000 0.3414 0.7770 0.7024 42.64023 42.64725
10 29 40.5163 9.5003 17.9258 2.0000 0.8414 0.7770 0.7024 43.9023 43,9725
11 1 0.0000 10.3004 6.0910 1.0000 0.4000 1.0000 1.0000 0.0000 0.0000
11 2 1.5000 10.3002 6.0909 1.0006 0.4000 1.0000 1.0000 1.500¢ 1.500¢0
11 3 3.0010 10.2995 6.0906 1.0000 0.4000 1.0000 1.0000 3.001¢0 3.0000
11 3 4.5015 10.2985 6.0902 1.0000 0.4000 1.0000 1.0000 4.5015 4.5000
11 5 6.0020 10.2964 6.0894% 1.0000 0.4000 1.0000 1.0000 6.0020 6.0000
11 6 7.502¢4 ig.2921 6.0878 1.0000 0.4000 1.0000 1.0000 7.5024 7.5000
11 7 9.0025 19.2823 6.0851 1.0000 0.4009 1.0000 1.0000 9.0026 9.0000
11 8 10.5069 10.2566 6.0810 1.0132 0.4055 0.9979 0.9970 10.5072 10.5049
11 9 12.0288 10.2086 6.0801 1.0490 0.4203 0.9920 0.9888 12.0298 12.0233
i 10 13.5837 10.1430 6.0961 1.1007 8.4418 0.9832 §.9765 13.5862 13.5855
11 11 15.1835 10.0662 6.1518 1.1619 0.4674 0.9722 0.9613 15.1888 15.1881
11 12 16.8276 9.9757 6.2757 1.2365 0.4988 0.9582 0.9420 16.8401 16.8380
11 13 18.4936 9.8688 6.6955 1.3296 0.5385 0.9397 0.9166 18.5239% 18.5215
11 14 20.1495 $.7535 6.8298 1.4361 0.5845 0.9172 0.8860 20.2171 20.2182
1115 21.768%4 9.66423 7.2840 1.5493 0.6361 0.8917 0.83518 21.9022 21.9112
11 6 23.3319 9.5457 7.8511 1.6613 0.6841 0.8651 0.8164% 23.5681 23.5879%
11 17 24.8302 9.4592 8.5152 1.7640 0.7307 0.8395 0.7828 25.2088 25.26402
11 18 26.2611 9.64142 9.2552 1.8491 0.7700 0.8176 0.7543 26.8207 26.8627
11 19 27.6287 9.3790 10.0476 1.9081 0.7977 0.8019 0.7342 28.4017 28.4522
11 29 23.9431 9.3581 10.8699 1.9467 0.81%59 0.7915 0.7209 29.9523 30.0083
11 21 30.2195 9.36459 11.7659 1.9754 0.8296 0.7837 0.7109 31.47381 31.53387
11 22 31.472% 9.3399 12.5%68 1.9936 0.8383 0.7788 0.7046 32.9875 33.0504
11 23 32.7158 9.3386 13.3892 2.0000 0.2414 06.7770 0.7024 34.4389 34.5529
11 24 33.9559 9.3397 14.2327 2.0000 0.8%414 04.7770 0.7024 35.93887 36.0529
11 25 35.1962 9.3408 15.0770 2.0000 0.3414% 0.7770 0.7024 37.6489%1 37.5529
11 26 36.4367 9.3412 15.9216 2.0000 0.8414 0.7770 0.7024 38.9898 39.0529
11 27 37.6768 9.3412 16.7659 2.0000 0.8414 0.7770 0.7024% 40.4901 40.5529
11 28 38.9162 9.3412 17.6102 2.0000 0.84%% 0.7770 0.702¢4% 41.9898 42.0529
11 29 40.1557 9.36414 18.4550 2.0000 0.8414% 0.7770 0.7024 43.48938 43.5529
12 1 0.0000 9.2730 7.6820 1.00090 0.4700 1.00090 1.0000 0.0000 0.000¢0
12 2 1.5000 9.2727 7.6818 1.00090 0.40600 1.0000 1.0000 1.50080 1.5000
12 3 3.0009 $.2720 7.6814% 1.0000 0.000 1.0000 1.0000 3.0009 3.0000
12 4 4.5014 9.2707 7.63808 1.0000 0.4000 1.0080 1.0000 4.5014 4.5000
iz 5 6.0029 9.2632 7.6793 1.0000 0.4000 1.0000 1.0000 6.0019 6.0000
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8.5 Output to tape or disk for three-dimensional graphics. - Output to tape or disk
for three-dimensional graphics occurs at the end of subroutine PUTOUT and is described
in section 6.3. A three-dimensional plot resulting from the sample input in section 7.4
follows. Running time on an IBM 370/3033 was 6.50 min.

9.0 NUMERICAL EXAMPLES

Five numerical examples of ducts are presented. For each example, the upstream
boundary configuration and associated grid are given together with the prescribed velocity
distribution on the lateral surface and a number of key input parameters. The results are
presented by three-dimensional graphs. The first example is a completely general three-
dimensional nozzle with a nonsymmetrical upstream boundary configuration and rapid
acceleration of the flow with no deceleration along the surface streamlines. The second
example is an accelerating elbow with the same upstream boundary configuration and
again no deceleration along the surface streamlines. The third example is an accelerating
S-duct with an elliptical upstream boundary configuration. The fourth example is a
rapidly decelerating elbow with a circular upstream boundary and an unusually sharp
turning angle. This solution, like the others, can be reversed to give, in this case, a
rapidly accelerating elbow with no deceleration along the surface streamlines. Of special
interest in this example is the pronounced initial turning of the inner wall in a direction
opposite to that of the elbow itself. This phenomenon has also been observed (ref. 3) in
designs of two-dimensional ducts. The last example is a preliminary design of a side-inlet
duct such as might be used with various types of turbomachinery. The solution has planar
symmetry (with a small amount of overlap in one region), and for the reverse flow case, is
an accelerating flow into a circular annulus with no deceleration anywhere along the duct
walls.
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9.1 Numerical example I. - Straight, three-dimensional nozzle with rapid acceleration (no
deceleration along streamlines)
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INPUT FOR NUMERICAL EXAMPLE I

q=a+bX + X2+ dx3:

Gp I

|

|

|

|

|

!

|

|

|

|

|

NI »1
I =31, I9=37, I3=31, I,=37, NI =67, gy = 2.0, AS = 0.5
Option ISYM = 1 Accuracy of finite-difference solution (EPSR) = 0.000005
Option IVEL = 1 Overrelaxation factor (ORFLAX) = 1.35
Major iterations (ITER) = 4 Exit-area error (ERRAR) = 0.0005
Coefficient to average x, y, z (CAVP) = 0.5 Running time (370/3033), min = 55,69
Upstream Mach number (AMU) = 0.4 DEL-P-01 = 0.3
Ratio of specific heats (GAM) = 1.4 DEL-P-12 = 0.2
Jlocation of primary streamline (JX} = 9 DEL-P-23 = 0.3
K location of primary streamline (KX) = 12 Location of principal streamline (XP) = 0.9
Number of subdivisions between
adjacent input values of T(NSD) = 1




NUMERICAL EXAMPLE 1
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9.2 Numerical example II. - General case of three-dimensional accelerating elbow (no
deceleration along streamlines)
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R

1.0(

INPUT FOR NUMERICAL EXAMPLE II

q=a+bX +cx2+ ax3:
\‘\3<=(I'Il)/(12"11) TX=(I'I3)/(14‘I3)

~

Option ISYM
Option IVEL
Major iterations (ITER)

Coefficient to average x, y, z (CAVP)
Upstream Mach number (AMU)

Ratio of specific heats (GAM)

J location of primary streamline (JX)
K location of primary streamline {KX)

I1=13,1,=19, I3=19, I5=25 NI =105, qp=2.0, AS=0.5

Number of subdivisions between

adjacent input values of T{NSD)

=1 Accuracy of finite-difference solution (EPSR)
= 1 Overrelaxation factor (ORELAX)

= 4 Exit-area error (ERRAR)

= 0.2 Running time (370 /3033), min

= 0.4 DEL-P-01

= 1.4 DEL-P-12

= 9 DEL-P-23

= 12 Location of principal streamline (XP)

= 3

[}

0. 000005
1.30

-0. 0019
103.14
0.3
0.2
0.3
0.9




NUMERICAL EXAMPLE II
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9.3 Numerical example III. - Accelerating S-duct with elliptical upstream boundary (no
deceleration along streamlines)
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INPUT FOR NUMERICAL EXAMPLE III

T\X = (I - I]_)/(IZ - Il)

gq=a +bX+cX2+dX3:
T\Z( =(I - 13)“14" 13)

<X = (1-I5) g - Iy

Il = 13, 12’19, 13"21, 14‘35, 15“41, 16'47, NI '59, AS =15

Option ISYM

Option IVEL

Major iterations (ITER)

Coefficient to average x, y, z (CAVP)

Upstream Mach number (AMU)

Ratio of specific heats (GAM)

J location of primary streamline (JX)

K location of primary streamiine {KX)

Number of subdivisions between
adjacent input values of I{NSD)

" Not applicable,

1l

1

10

0.2
0.3
1.4

’

Accuracy of finite-difference solution (EPSR)
Overrelaxation factor (ORELAX)

Exit-area error (ERRAR)

Running time (370 /3033), min

DEL-P-01

DEL-P-12

DEL-P-23

Location of principal streamline (XP)

i

i

[}

"

0. 000005
1.30

0. 0005
29.64
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9.4 Numerical example IV. - Decelerating elbow with sharp turn and circular upstream
boundary (no deceleration for reversed flow)
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INPUT FOR NUMERICAL EXAMPLE IV

q=a+bX+ox?+dx3:
\‘\\X’ (I'Il) I(IZ-I]_)

X -T iy - 1)

ap | 7)
I |
| |
' l
{
| |
I [
| 1
| |
{ |
| I
| |
| |
|
| [
| | |
I Iy NI
Il =26, IZ =31, I3= 18, I4= 23, NI = 60, 4p=0.25, A5-1.0
Option ISYM =1 Accuracy of finite-difference solution (EPSR) = 0. 000005
Option IVEL = 2 Overrelaxation factor (ORELAX) = 1.30
Major iterations (ITER) = 4 Exit-area error (ERRAR) = 0.0024
Coefficient to average x, y, z(CAVP) = 0.0 Running time (370 /3033), min = 121,38
Upstream Mach number (AMU) = 0,6 DEL-P-01 = %
Ratio of specific heats (GAM) = 1.4 DEL-P-12 = ¥
J location of primary streamline (JX) = 10 DEL-P-23 =
K location of primary streamline (KX) = 10 Location of principal streamline (XP) =
Number of subdivisions between
adjacent input values of T{NSD) =1

" Not applicable,
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9.5 Numerical example V. - Planar symmetry solution for side inlet (in reversed-flow

case; no deceleration for reversed-flow direction)
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INPUT FOR NUMERICAL EXAMPLE V

0 A q=a+bX + X2+ ax3:
<\X=(I-Il)l(12-11) \—\X=(I-I3)I(I4—I3)
~,
Gp \i)
|
|
|
|
}
I
|
}
|
|
N |
P |
L L3 ]
1 I1+1 I I NI
I;=21, Ip=31, I3=11, Ip=31, NI =60, gp = 0.25, AS = 2.0
Option ISYM = 2 Accuracy of finite-difference solution(EPSR) = 0. 000005
Option IVEL = 2 Overrelaxation factor (ORELAX) = 1.30
Major iterations (ITER) = 6 Exit-area error (ERRAR) = 0.0110
Coefficient to average x, y, z (CAVP) = 0.0 Running time (370 /3033), min = 33.05
Upstream Mach number (AMU) = 0.6 DEL-P-01 =
Ratio of specific heats (GAM) = 1.4 DEL-P-12 =
J location of primary streamline (JX) = 9 DEL-P-23 =
K location of primary streamline (KX) = 15 Location of principal streamline (XP) =
Number of subdivisions between
adjacent input values of T(NSD) = 1

" Not applicable,
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10.0 CONCLUDING REMARKS

The general design method for three-dimensional, potential flow developed in part I
of this report (ref. 1) is herein applied to the design of simple, unbranched ducts. A com-
puter program, DIN3D1, is developed and five numerical examples are presented,
including a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for
turbomachines. The two major inputs to the program are the upstream boundary config-
uration and the lateral velocity distribution on the duct wall. As a result of these inputs,
boundary conditions of the problem are overprescribed and the problem is ill posed. How-
ever, it appears that there are degrees of "compatibility" between the two major inputs
and that for reasonably compatible inputs satisfactory, reliable solutions can be obtained.
By not prescribing the shape of the upstream boundary, the problem presumably becomes
well posed, but it is not clear how to carry out a practical design method under this cir-
cumstance. Nor does it appear desirable, because the designer usually needs to retain
control over the upstream (or downstream) boundary configuration.

The problem is further complicated by the fact that, unlike the two-dimensional
case, and irrespective of the upstream boundary shape, some prescribed lateral velocity
distributions do not have proper solutions (appendix C).

The input data for an example solution together with example output tables and 2
three-dimensional plot of the solution are given in sections 7.4 and 8.1 to 8.5, respectively.




APPENDIX A

"EQUILIBRIUM" VELOCITY DISTRIBUTIONS FOR
INPUT OPTION IVEL EQUAL TO 2 0OR 3

The "equilibrium" velocity distributions for input option IVEL equal to 2 or 3 refer
to the velocity distributions around the contours of the potential surfaces; the velocity
distribution along the principal streamline (section 7.2) is not affected. Variation in the
velocity distribution around the contour (e.g., DQ in second fig. of section 7.2) causes the
duct to bend and may be looked upon as the duct "loading."

Consider potential flow in an infinitely long duct with constant loading. Such a duct
will turn an infinite number of degrees, and the duct cross section will be constant. Under
these circumstances, the potential surfaces are flat planes, and the "equilibrium" velocity
distribution normal to the planes is a free vortex

qr = constant (AD
where the radius T is measured from the axis about which the duct bends.

Such an equilibrium duct shape halfway between ic0 can be considered to lie on
the Y,Z plane corresponding to the upstream boundary. Thus,

2A
Axis jor TVEL=2

|

0 "min

/ |
//
Zp Shape of duct
L cross section —~ Axis for
\\\ 1 IVEL=3
"~ Location
of principal
streamline, IP
t
Z
Zo _S;s__

For IVEL = 2, the axis of the bend is 2 line of constant Z; and for IVEL = 3, the axis is a
line of constant Y, as shown.

For IVEL equal to 2 or 3, the "equilibrium" shape is assumed to be the input shape
of the upstream boundary and the lateral velocity distribution corresponds to the "equi-
librium" velocity based on that shape. (Other shapes could be used, but these would entail
additional input and probably would not achieve the same degree of compatibility
(section 4.1) between the prescribed upstream boundary shape and the prescribed lateral

velocity distribution.)
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For IVEL = 2, equation (Al) gives

qar = 9y =<qP + Aqamp) T (A2)

where (preceding figure) the subscript P refers to the principal streamline (at which qp
is the input value of QP(I)) and subscript o refers to the maximum (outer) radius where
q is equalto qp + /_\qam and Aq,yp is the input value (negative) of DQAMP(D at
potential surface I. (Note that DQAIE[P(I) for IVEL options 2 and 3, as opposed to
option 1, is the difference between the minimum velocity, which occurs at r, in the
figure, and the input velocity QP(I) of the principal streamline.)

In the figure, the radius r is related to the Z coordinate by

ZP -Z
T=1p 4 (ro - rP> A A (A3)
P o}
and
ro-erzP —Z0 (A4}
From equations (A2) and (A4),
dp’p = (qP ¥ Aqamp)l:rP ¥ (zP - zo>]
or

q,+ Ag
__P amp _
T = Aq <zP zo> (A5)
amp

and from equations (A2), (A3), and (AS),




q,Tr q
PP
q. = I. = A P Z - Z (A6)
1- qamp < P >
dp * Aqamp Zp - Zo

Thus, at each potential surface I, for IVEL = 2, equation (Aé) gives the lateral distri-
bution of velocity q as a function of the coordinate Z around the upstream boundary
contour.

As shown in the preceding figure, Tp (at which radius q = qy) can be greater
than rpin (at which radius q = qupzx), bit r, must be reasonabﬁr greater than
Ty (at which radius q = qypip). In subroutine gELD, for IVEL = 2, if

r -T Zz, -2
o) P P o
r -7 "7 -7 < 0.5 (A7)
0 “min mi o]
the solution is stopped.
In 2 similar fashion, for IVEL = 3,
q:qPrP= x . T (A8)
r 1. % mp < P~
dp* Aqamp Yp- 1,
and the solution is stopped if
T -r Y -Y
o} P P Q
ror Y -y < 0.5 (A9)
o “min min o}

71




78

APPENDIX B

CONDITION FOR NORMALITY OF UNIT VECTORS € and €3
WITH UNIT VECTOR &
Consider the case in which the unit vectors €} and € are not normal and find the

direction cosines for a third unit vector €jy, which lies in the plane of €; and €j andis
normal to €;. Thus,

Because the three vectors are coplanar, they are related by
E-Zx = klé'l + kzé‘z (BL)
from which

cos aZx = ]ﬁ cos cx,l +k2 cos az

cos BZx = k1 cos Bl + kz cos Bz (B2)

cos Y?.x = kl cos Yl + kz cos Yz




where co0s agy;..., c0s Y3 are the direction cosines of €jy, €1, and € and k; and kg
are constants.

The constants kj and ky are determined from equation (B1) as follows:

€y " &1 =0=1<1 +k2cose

and

(14

e2x' z=cos(6 »90)=sm6=k1 cos@+kz

from which

1" "tan® (B3)

and

1

k)= Gno (B4)

Thus, the direction cosines for €9y, which is € adjusted to satisfy the normality
condition, are known from equations (B2) to (B4).

In a similar fashion, the adjusted direction cosines for €3 are given by

cos =k cosa., + cos
GBx kl 1 k2 qﬁ

cos BSx = k1 cos Bl +k, cos 33 (BS)

2
cos Y3x = 1<1 cos Yl + kz cos Y3

where ki and ky are given by equations (B3) and (B4), respectively.
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APPENDIX C
PROBLEMS AND LIMITATIONS OF THE THREE-DIMENSIONAL DESIGN METHOD

The ill-posed nature of the three-dimensional duct design method when both the
upstream boundary configuration and the lateral velocity distribution are prescribed is
discussed in section 4.0. This ill-posed nature negates a proper solution. However, for
relatively "compatible” upstream boundary configurations and lateral velocity distribu-~
tions, reasonable solutions are forced by introduction of the six constraints in section 4.2
and by limiting the number of major iterations (ITER) to a range over which the solution is
converging, as evidenced by decreasing maximum residuals #. This appendix considers
other problems and limitations of the design method, and for this purpose it is assumed
that a method exists for assuring an absolutely compatible upstream boundary configu-
ration (if such exists) for a given prescribed, lateral-velocity distribution. Also, without
destroying the generality of the discussion, it is convenient to assume planar symmetry.

For the classical, two-dimensional, duct design problem (ref. 3) a solution exists for
every prescribed, piecewise~continuous, velocity distribution along the duct walls. For
the three-dimensional problem this universal existence does not appear to be the case.
For example, consider a straight duct (which, if the velocity is not constant, implies two
planes of symmetry at right angle, with the duct centerline along the intersection).
Presumably, if the duct is straight, the upstream boundary configuration has biplanar
symmetry, but is otherwise general. Thus,

,~ Centerline

s of duct
b [P =025 / !

+

7
!

!

{

~
~- Planes of
symmetry

~

where P is the decimal fraction of distance around the contour. In the upstream and
downstream regions (section 7.2), the lateral velocity q, expressed as a ratio of the
upstream velocity, is 1.0 along every boundary streamline. Elsewhere, let the prescribed
velocity be 1.0 along the streamlines through a and c (P = 0.0 and 0.5, respectively), and
let the velocity decrease along the contour in an arbitrary fashion, but with biplanar sym-
metry, to a finite value approaching zero for the streamline through b (P = 0.25). If this
distribution of velocity with P is maintained along the boundary streamlines over a large
range of the velocity potential Ag, then from equation (3.0.1)




Ao = qa,c(AS)a,c= qb(As)b (CL

so that over the range A¢

g
(As)b = (As) (CH
4y, a,C
from which the length (As), of streamline b becomes many times larger than the
streamline length (As), ., and no solution (i.e., shape of flow field) appears likely. It
might be argued that the large (As), could be accommodated by a rapid outward fanning
of streamline b, but the pressure gradients associated with the velocity distribution
preclude this. (The rapid outward fanning of streamline b would approach a two-
dimensional configuration in which streamlines a and ¢ come together, lie on the duct
centerline, and have a velocity distribution that adjusts to the prescribed velocity of
boundary streamline b. In the three-dimensional case, however, the velocity distributions
along streamlines a and c are prescribed and thus cannot adjust. This inability to adjust
is probably the center of the problem.)

Finally, for the example just discussed the velocity q along the straight streamline
on the centerline of the duct can be no higher than 1.0 (which is the highest velocity on
the boundary streamlines in this example) and will be less than 1.0 where influenced by
velocities less than 1.0 on the boundary. The lengths of the streamlines between the
upstream and downstream potential surfaces are given by

A
As = f do (C3)
b g

Thus, As for the centerline streamline with velocities less than 1.0 is longer than As for
the boundary streamlines a and c, which have a constant prescribed velocity of 1.0.
However, in contradiction, the centerline streamline must be shorter than the boundary
streamlines a and c, because it is straight and normal to the upstream and downstream
potential surfaces, which are flat and parallel. It is concluded that for three-dimensional
design problems not every prescribed velocity distribution has a proper solution.

For velocity distributions without proper solutions program DIN3D1, using the
constraints in section 4.2 and limiting the number of major iterations (ITER), forces a
“reasonable” solution. A measure of this reasonableness is the difference in streamline
lengths S-1 and S-II (output table I, which lengths should be equal.

Another problem area in the application of program DIN3D1 occurs when certain
characteristics in the shape of the downstream boundary configuration are desired.
{There is, of course, no way to achieve a precise shape, because the downstream config-
uration is dictated by the upstream configuration and the prescribed lateral velocity dis-
tribution.) For example, consider a straight duct with a transition section in which the
duct cross section changes from a circular upstream shape to an elliptical downstream
shape of the same area. A normal design procedure, based on one-dimensional consider~
ations, would keep the duct area constant and employ a linear variation in the fineness
ratio of the elliptical cross section starting from 1.0 for the circle and ending with the
desired value for the downstream shape. Here, to avoid large losses, the designer's
objective is to keep the velocity on the duct wall constant (i.e., g = 1.0 along the boundary
streamlines); and provided that the transition length is not too short, this objective should
be nearly achieved. Thus for this type of three-dimensional design problem very large
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changes in the duct cross section occur for very small changes in the prescribed lateral
velocity distribution. It is not easy to determine just how large and where these small
changes in velocity should be. Furthermore because this type of problem is so sensitive to
small changes in lateral velocity distribution, the downstream boundary shape is also
sensitive to the necessarily approximate methods used in the forced, finite-difference
solution of the governing differential equation (3.3.1). That is, the downstream shape
varies appreciably with number of iterations (ITER), with upstream grid size and arrange-
ment (section 7.1), with various damping coefficients (sections 4.6 and 5.2.2), and perhaps
with such lesser iterations as ICONX (section 5.1.1) and NTRY (section 7.3).

In summary, it is not easy to control the downstream boundary shape of the duct by
the prescribed lateral velocity distribution; although it is relatively easy to control the
streamwise shape of the duct by this means. However, substantial differences in the
downstream shape need not imply significantly different lateral velocity distributions,
provided that the downstream areas are equal in size. Finally, in those cases where the
downstream shape is important, the solution becomes more sensitive to the lateral veloc-
ity distribution, if the damping coefficient CAVN is reduced to 0.0, or at most is not
greater than 0.1. .
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